dc.contributor.author | Wright, CD | |
dc.contributor.author | Bhaskaran, H | |
dc.contributor.author | Pernice, WHP | |
dc.date.accessioned | 2019-09-27T08:01:45Z | |
dc.date.issued | 2019-09-05 | |
dc.description.abstract | Driven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example, set goals for the storing and processing of information directly in the optical domain. Doing this might enable us to supplement, or even surpass, the performance of electronic processors, by exploiting the ultrahigh bandwidth and wavelength division multiplexing capabilities offered by optics. In this article, we show how, by using an integrated photonics platform that embeds chalcogenide phase-change materials into standard silicon photonics circuits, we can achieve some of these goals. Specifically, we show that a phase-change integrated photonics platform can deliver binary and multilevel memory, arithmetic and logic processing, as well as synaptic and neuronal mimics for use in neuromorphic, or brain-like, computing-all working directly in the optical domain. | en_GB |
dc.description.sponsorship | European Union Horizon 2020 | en_GB |
dc.identifier.citation | Vol. 44 (9), pp. 721 - 725 | en_GB |
dc.identifier.doi | 10.1557/mrs.2019.203 | |
dc.identifier.grantnumber | 780848 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/38912 | |
dc.language.iso | en | en_GB |
dc.publisher | Cambridge University Press (CUP) / Materials Research Society | en_GB |
dc.rights.embargoreason | Under embargo until 5 March 2020 in compliance with publisher policy | en_GB |
dc.rights | © 2019 Materials Research Society | en_GB |
dc.subject | memory | en_GB |
dc.subject | phase transformation | en_GB |
dc.subject | nucleation and growth | en_GB |
dc.title | Integrated phase-change photonic devices and systems | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-09-27T08:01:45Z | |
dc.identifier.issn | 0883-7694 | |
dc.description | This is the author accepted manuscript. The final version is available from CUP via the DOI in this record | en_GB |
dc.identifier.journal | MRS Bulletin | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2019-07-08 | |
exeter.funder | ::Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
exeter.funder | ::European Commission | en_GB |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2019-09-05 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-09-26T15:01:46Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2020-03-05T00:00:00Z | |
refterms.panel | B | en_GB |