This paper presents fabrication, measurement and modelling results for a metal-dielectric-metal metasurface absorber for solar thermal applications. The structure uses amorphous carbon as an inter-layer between thin gold films with the upper film patterned with a 2D periodic array using focused ion beam etching. The patterned has been ...
This paper presents fabrication, measurement and modelling results for a metal-dielectric-metal metasurface absorber for solar thermal applications. The structure uses amorphous carbon as an inter-layer between thin gold films with the upper film patterned with a 2D periodic array using focused ion beam etching. The patterned has been optimised to give high absorptance from 400-1200nm and low absorptance above this wavelength range to minimise thermal radiation and hence obtain higher temperature performance. Wide angle absorptance results are shown and detailed modelling of a realistic nanostructured upper layer results in excellent agreement between measured and modelled results. The use of gold in this paper is a first step towards a high temperature metasurface where gold can be replaced by other refractory metals such as tungsten or chrome.