Show simple item record

dc.contributor.authorRoy, S
dc.contributor.authorShivakumara, P
dc.contributor.authorJain, N
dc.contributor.authorKhare, V
dc.contributor.authorDutta, A
dc.contributor.authorPal, U
dc.contributor.authorLu, T
dc.date.accessioned2019-10-14T10:07:40Z
dc.date.issued2018-02-24
dc.description.abstractScene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipScience Foundation for Distinguished Young Scholars of Jiangsuen_GB
dc.description.sponsorshipUniversity of Malayaen_GB
dc.identifier.citationVol. 80, pp. 64 - 82en_GB
dc.identifier.doi10.1016/j.patcog.2018.02.014
dc.identifier.grantnumber61672273en_GB
dc.identifier.grantnumber61272218en_GB
dc.identifier.grantnumber61321491en_GB
dc.identifier.grantnumberBK20160021en_GB
dc.identifier.grantnumberM.C/625/1/HIR/210en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39184
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2018. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectRough seten_GB
dc.subjectFuzzy seten_GB
dc.subjectVideo categorizationen_GB
dc.subjectScene image classificationen_GB
dc.subjectVideo text detectionen_GB
dc.subjectVideo text recognitionen_GB
dc.titleRough-fuzzy based scene categorization for text detection and recognition in videoen_GB
dc.typeArticleen_GB
dc.date.available2019-10-14T10:07:40Z
dc.identifier.issn0031-3203
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.en_GB
dc.identifier.journalPattern Recognitionen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-02-11
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-08-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-10-14T09:58:00Z
refterms.versionFCDAM
refterms.dateFOA2019-10-14T10:07:44Z
refterms.panelBen_GB
refterms.dateFirstOnline2018-02-24


Files in this item

This item appears in the following Collection(s)

Show simple item record