Show simple item record

dc.contributor.authorZhang, H
dc.contributor.authorCasaseca-De-La-Higuera, P
dc.contributor.authorLuo, C
dc.contributor.authorWang, Q
dc.contributor.authorKitchin, M
dc.contributor.authorParmley, A
dc.contributor.authorMonge-Alvarez, J
dc.date.accessioned2019-10-30T16:28:47Z
dc.date.issued2016-10-26
dc.description.abstractInfrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).en_GB
dc.description.sponsorshipCentre for Excellence for Sensor and Imaging System (CENSIS)en_GB
dc.description.sponsorshipScottish Funding Councilen_GB
dc.description.sponsorshipDigital Health and Care Institute (DHI)en_GB
dc.description.sponsorshipRoyal Society of Edinburghen_GB
dc.description.sponsorshipNational Science Foundation of Chinaen_GB
dc.identifier.citationVol. 10008, article 100080Pen_GB
dc.identifier.doi10.1117/12.2242036
dc.identifier.grantnumberCAF-0036en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39408
dc.language.isoenen_GB
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)en_GB
dc.rights© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.en_GB
dc.subjectSuper-Resolution Convolutional Neural Network (SRCNN)en_GB
dc.subjectIRTen_GB
dc.subjectsuper-resolutionen_GB
dc.subjectADT/Ren_GB
dc.titleSystematic infrared image quality improvement using deep learning based techniquesen_GB
dc.typeConference paperen_GB
dc.date.available2019-10-30T16:28:47Z
dc.identifier.isbn9781510604209
dc.identifier.issn0277-786X
dc.descriptionThis is the final version. Available from SPIE via the DOI in this recorden_GB
dc.identifier.journalProceedings of SPIEen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2016-10-26
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2019-10-30T16:25:50Z
refterms.versionFCDVoR
refterms.dateFOA2019-10-30T16:28:50Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record