Show simple item record

dc.contributor.authorLand, PE
dc.contributor.authorFindlay, H
dc.contributor.authorShutler, J
dc.contributor.authorAshton, I
dc.contributor.authorHolding, T
dc.contributor.authorGrouazel, A
dc.contributor.authorGIrard-Ardhuin, F
dc.contributor.authorReul, N
dc.contributor.authorPiolle, J-F
dc.contributor.authorChapron, B
dc.contributor.authorQuilfen, Y
dc.contributor.authorBellerby, R
dc.contributor.authorBhadury, P
dc.contributor.authorSalisbury, J
dc.contributor.authorVandemark, D
dc.contributor.authorSabia, R
dc.date.accessioned2019-11-08T10:04:14Z
dc.date.issued2019-11-08
dc.description.abstractImproving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ data are reproducible, both regionally and globally, using salinity and temperature datasets, with satellite observed salinity from Aquarius and SMOS providing performance comparable to other datasets for the majority of case studies. Global root mean squared difference (RMSD) between in situ validation data and satellite estimates is 17 µmol kg-1 with bias < 5 µmol kg-1 for AT and 30 µmol kg-1 45 with bias < 10 µmol kg-1 46 for CT. This analysis demonstrates that satellite sensors provide a credible solution for monitoring surface synoptic scale AT and CT. It also enables the first demonstration of observation-based synoptic scale AT and CT temporal mixing in the Amazon plume for 2010-2016, complete with a robust estimation of their uncertainty.en_GB
dc.description.sponsorshipEuropean Space Agency (ESA)en_GB
dc.identifier.citationVol. 235, article 111469en_GB
dc.identifier.doi10.1016/j.rse.2019.111469
dc.identifier.grantnumberRF-2015-152en_GB
dc.identifier.grantnumber4000110778/14/I-BGen_GB
dc.identifier.grantnumber4000112091/14/I-LGen_GB
dc.identifier.urihttp://hdl.handle.net/10871/39565
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 8 November 2020 in compliance with publisher policyen_GB
dc.rights© 2019. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectCarbonate chemistryen_GB
dc.subjectEarth observationen_GB
dc.subjectOcean acidificationen_GB
dc.subjectTotal alkalinityen_GB
dc.subjectDissolved inorganic carbonen_GB
dc.subjectSMOSen_GB
dc.subjectAquariusen_GB
dc.subjectCORAen_GB
dc.subjectHadGEM2-ESen_GB
dc.titleOptimum satellite remote sensing of the marine carbonate system using empirical algorithms in the Global Ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengalen_GB
dc.typeArticleen_GB
dc.date.available2019-11-08T10:04:14Z
dc.identifier.issn0034-4257
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalRemote Sensing of Environmenten_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2019-10-10
exeter.funder::European Space Agencyen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2019-10-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-11-07T15:55:46Z
refterms.versionFCDAM
refterms.dateFOA2020-11-08T00:00:00Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2019. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2019. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/