Show simple item record

dc.contributor.authorFarmakidis, N
dc.contributor.authorYoungblood, N
dc.contributor.authorLi, X
dc.contributor.authorTan, J
dc.contributor.authorSwett, JL
dc.contributor.authorCheng, Z
dc.contributor.authorWright, CD
dc.contributor.authorPernice, WHP
dc.contributor.authorBhaskaran, H
dc.date.accessioned2019-12-04T15:56:06Z
dc.date.issued2019-11
dc.description.abstractModern-day computers rely on electrical signaling for the processing and storage of data, which is bandwidth-limited and power hungry. This fact has long been realized in the communications field, where optical signaling is the norm. However, exploiting optical signaling in computing will require new on-chip devices that work seamlessly in both electrical and optical domains, without the need for repeated electrical-to-optical conversion. Phase-change devices can, in principle, provide such dual electrical-optical operation, but assimilating both functionalities into a single device has so far proved elusive owing to conflicting requirements of size-limited electrical switching and diffraction-limited optical response. Here, we combine plasmonics, photonics, and electronics to deliver an integrated phase-change memory cell that can be electrically or optically switched between binary or multilevel states. Crucially, this device can also be simultaneously read out both optically and electrically, offering a new strategy for merging computing and communications technologies.en_GB
dc.description.sponsorshipEuropean Commissionen_GB
dc.description.sponsorshipEPSRCen_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaften_GB
dc.description.sponsorshipEuropean Research Councilen_GB
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation programen_GB
dc.identifier.citationVol. 5, No 11 pp. eaaw2687 - eaaw2687en_GB
dc.identifier.doi10.1126/sciadv.aaw2687
dc.identifier.grantnumberEP/J018694/1en_GB
dc.identifier.grantnumberEP/M015173/1en_GB
dc.identifier.grantnumberEP/M015130/1en_GB
dc.identifier.grantnumberPE 1832/2-1en_GB
dc.identifier.grantnumber682675en_GB
dc.identifier.grantnumber780848en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39964
dc.language.isoenen_GB
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_GB
dc.rights© 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_GB
dc.titlePlasmonic nanogap enhanced phase-change devices with dual electrical-optical functionalityen_GB
dc.typeArticleen_GB
dc.date.available2019-12-04T15:56:06Z
dc.descriptionThis is the final version. Available from American Association for the Advancement of Science via the DOI in this record. en_GB
dc.identifier.journalScience Advancesen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-09-23
exeter.funder::European Commissionen_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-09-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-12-04T15:47:57Z
refterms.versionFCDVoR
refterms.dateFOA2019-12-04T15:56:13Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record