Show simple item record

dc.contributor.authorKampffmeyer, M
dc.contributor.authorLøkse, S
dc.contributor.authorBianchi, FM
dc.contributor.authorJenssen, R
dc.contributor.authorLivi, L
dc.date.accessioned2019-12-06T09:58:58Z
dc.date.issued2018-07-18
dc.description.abstractAutoencoders learn data representations (codes) in such a way that the input is reproduced at the output of the network. However, it is not always clear what kind of properties of the input data need to be captured by the codes. Kernel machines have experienced great success by operating via inner-products in a theoretically well-defined reproducing kernel Hilbert space, hence capturing topological properties of input data. In this paper, we enhance the autoencoder's ability to learn effective data representations by aligning inner products between codes with respect to a kernel matrix. By doing so, the proposed kernelized autoencoder allows learning similarity-preserving embeddings of input data, where the notion of similarity is explicitly controlled by the user and encoded in a positive semi-definite kernel matrix. Experiments are performed for evaluating both reconstruction and kernel alignment performance in classification tasks and visualization of high-dimensional data. Additionally, we show that our method is capable to emulate kernel principal component analysis on a denoising task, obtaining competitive results at a much lower computational cost.en_GB
dc.description.sponsorshipNorwegian Research Council FRIPROen_GB
dc.identifier.citationVol. 71, pp. 816 - 825en_GB
dc.identifier.doi10.1016/j.asoc.2018.07.029
dc.identifier.grantnumber239844en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39989
dc.language.isoenen_GB
dc.publisherElsevier for World Federation on Soft Computing (WFSC)en_GB
dc.rights© 2018. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectAutoencodersen_GB
dc.subjectKernel methodsen_GB
dc.subjectDeep learningen_GB
dc.subjectRepresentation learningen_GB
dc.titleThe deep kernelized autoencoderen_GB
dc.typeArticleen_GB
dc.date.available2019-12-06T09:58:58Z
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.eissn1872-9681
dc.identifier.journalApplied Soft Computingen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2018-07-07
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-07-18
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-12-06T09:57:17Z
refterms.versionFCDAM
refterms.dateFOA2019-12-06T09:59:02Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2018. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2018. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/