Show simple item record

dc.contributor.authorMoxey, D
dc.contributor.authorCantwell, CD
dc.contributor.authorBao, Y
dc.contributor.authorCassinelli, A
dc.contributor.authorCastiglioni, G
dc.contributor.authorChun, S
dc.contributor.authorJuda, E
dc.contributor.authorKazemi, E
dc.contributor.authorLackhove, K
dc.contributor.authorMarcon, J
dc.contributor.authorMengaldo, G
dc.contributor.authorSerson, D
dc.contributor.authorTurner, M
dc.contributor.authorXu, H
dc.contributor.authorPeiró, J
dc.contributor.authorKirby, RM
dc.contributor.authorSherwin, SJ
dc.date.accessioned2020-01-29T11:21:38Z
dc.date.issued2019-12-18
dc.description.abstractNektar++ is an open-source framework that provides a flexible, high-performance and scalable platform for the development of solvers for partial differential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enables a more rapid introduction for new users unfamiliar with spectral/hp element methods, C++ and/or Nektar++. This release also incorporates a number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid–structure interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned and by discussing some directions for future code development and expansion. Program summary: Program Title: Nektar++ Program Files doi: http://dx.doi.org/10.17632/9drxd9d8nx.1 Code Ocean Capsule: https://doi.org/10.24433/CO.9865757.v1 Licensing provisions: MIT Programming language: C++ External routines/libraries: Boost, METIS, FFTW, MPI, Scotch, PETSc, TinyXML, HDF5, OpenCASCADE, CWIPI Nature of problem: The Nektar++ framework is designed to enable the discretisation and solution of time-independent or time-dependent partial differential equations. Solution method: spectral/hp element methoden_GB
dc.description.sponsorshipEPSRCen_GB
dc.description.sponsorshipBritish Heart Foundationen_GB
dc.description.sponsorshipRoyal Society of Engineeringen_GB
dc.description.sponsorshipEU FP7en_GB
dc.description.sponsorshipHorizon 2020en_GB
dc.description.sponsorshipNational Natural Science Foundationen_GB
dc.description.sponsorshipMcLaren Racingen_GB
dc.description.sponsorshipArmy Research Officeen_GB
dc.description.sponsorshipAir Force Office of Scientific Researchen_GB
dc.description.sponsorshipDepartment of Energyen_GB
dc.identifier.citationPublished online 18-December-2019en_GB
dc.identifier.doi10.1016/j.cpc.2019.107110
dc.identifier.grantnumberEP/R029423/1en_GB
dc.identifier.grantnumberEP/R029326/1en_GB
dc.identifier.grantnumberEP/L000407/1en_GB
dc.identifier.grantnumberEP/K037536/1en_GB
dc.identifier.grantnumberEP/K038788/1en_GB
dc.identifier.grantnumberEP/L000261/1en_GB
dc.identifier.grantnumberEP/I037946/1en_GB
dc.identifier.grantnumberEP/H000208/1,en_GB
dc.identifier.grantnumberEP/I030239/1en_GB
dc.identifier.grantnumberEP/H050507/1,en_GB
dc.identifier.grantnumberEP/D044073/1en_GB
dc.identifier.grantnumberEP/C539834/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/40638
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)en_GB
dc.subjectNektar++en_GB
dc.subjectSpectral/hp element methodsen_GB
dc.subjectHigh-order finite element methodsen_GB
dc.titleNektar++: Enhancing the capability and application of high-fidelity spectral/hp element methodsen_GB
dc.typeArticleen_GB
dc.date.available2020-01-29T11:21:38Z
dc.identifier.issn0010-4655
dc.descriptionThis is the final version. Available from Elsevier via the DOI in this record. en_GB
dc.identifier.journalComputer Physics Communicationsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-12-05
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-12-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-01-29T11:08:54Z
refterms.versionFCDVoR
refterms.dateFOA2020-01-29T11:21:56Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record