Harvested rainwater quality: the importance of appropriate design
Ward, Sarah; Memon, Fayyaz; Butler, David
Date: 1 April 2010
Article
Journal
Water Science and Technology
Publisher
IWA Publishing
Publisher DOI
Abstract
This paper summarises the physicochemical and microbiological quality of water from a rainwater harvesting (RWH) system in a UK-based office building. 7 microbiological and 34 physicochemical parameters were analysed during an 8 month period. Physicochemically, harvested rainwater quality posed little health risk; most parameters showed ...
This paper summarises the physicochemical and microbiological quality of water from a rainwater harvesting (RWH) system in a UK-based office building. 7 microbiological and 34 physicochemical parameters were analysed during an 8 month period. Physicochemically, harvested rainwater quality posed little health risk; most parameters showed concentrations below widely used guideline levels for drinking water. However, RWH system components (e.g. fittings and down pipes) appear to be affected soft water corrosion, resulting in high concentrations of some metals (copper, zinc and aluminium). This suggests the material selection of such fittings should be considered keeping in view the hardness of rainwater of an area. Microbiologically, Cryptosporidium, Salmonella and Legionella were not present in the samples analysed. However, faecal coliform counts were high at the beginning of the study, but did decrease over time in weak correlation with increasing pH. Enterococcus faecalis displayed counts consistently above UK rainwater harvesting standards. Inappropriate roof and rainwater good design, as well as material selection appear to be responsible for the reduced microbial quality, as they promoted contributions from avian sources and inhibited cleaning activities. Building and RWH system designs require greater consideration of local factors, which are critical for optimising harvested rainwater quality, to prevent both the development of contaminated sediments and health impacts.
Engineering
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design
McClymont, Kent; Keedwell, Edward; Savic, Dragan (Elsevier, 7 February 2015)Evolutionary Algorithms (EAs) have been widely employed to solve water resources problems for nearly two decades with much success. However, recent research in hyperheuristics has raised the possibility of developing ... -
Urban water system metabolism assessment using WaterMet2 model
Behzadian, K; Kapelan, Z; Venkatesh, G; et al. (Elsevier, 23 April 2014)This paper presents a new "WaterMet2" model for integrated modelling of an urban water system (UWS). The model is able to quantify the principal water flows and other main fluxes in the UWS. The UWS in WaterMet2 is ... -
Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions
Basupi, Innocent; Kapelan, Zoran; Butler, David (Taylor & Francis, 1 February 2014)Water distribution systems (WDSs) construction, operation and disposal processes contribute to undesirable greenhouse gas (GHG) emissions. GHG concentration in the atmosphere is strongly associated with global warming and ...