Show simple item record

dc.contributor.authorAshwin, Peteren_GB
dc.contributor.authorPatnaik, B. S. V.en_GB
dc.contributor.authorWright, C. Daviden_GB
dc.date.accessioned2009-01-16T16:30:42Zen_GB
dc.date.accessioned2011-01-25T10:33:24Zen_GB
dc.date.accessioned2013-03-20T12:29:03Z
dc.date.issued2008-10-20en_GB
dc.description.abstractA stochastic cellular automata simulator capable of spatiotemporal modeling of the crystallization and amorphization behavior of phase-change materials during the complex annealing cycles used in optical and electrical memory applications is presented. This is based on consideration of bulk and surface energies to generate rates of growth and decay of crystallites built up from “monomers” that may themselves be quite complex molecules. The approach uses a stochastic Gillespie-type time-stepping algorithm to deal with events that may occur on a very wide range of time scales. The simulations are performed at molecular length scale and using an approximation of local free energy changes that depend only on immediate neighbors. The approach is potentially capable of spanning the length scales between ab initio atomistic modeling methods, such as density functional theory, and bulk-scale methods, such the Johnshon–Mehl–Avrami–Kolmogorov formalism. As an example the model is used to predict the crystallization behavior in the chalcogenide Ge2Sb2Te5 alloy commonly used in phase-change memory devices. The simulations include annealing cycles with nontrivial spatial and temporal variations in temperature, with good agreement to experimental incubation times at low temperatures while modeling nontrivial crystal size distributions and melting dynamics at higher temperatures.en_GB
dc.identifier.citationVol. 104 (8), article 084901en_GB
dc.identifier.doi10.1063/1.2978334en_GB
dc.identifier.urihttp://hdl.handle.net/10036/47619en_GB
dc.language.isoenen_GB
dc.publisherAmerican Institute of Physicsen_GB
dc.subjectab initio calculationsen_GB
dc.subjectamorphisationen_GB
dc.subjectannealingen_GB
dc.subjectcellular automataen_GB
dc.subjectchalcogenide glassesen_GB
dc.subjectcrystallisationen_GB
dc.subjectcrystallitesen_GB
dc.subjectdensity functional theoryen_GB
dc.subjectfree energyen_GB
dc.subjectphase change materialsen_GB
dc.subjectspatiotemporal phenomenaen_GB
dc.subjectstochastic processesen_GB
dc.subjectsurface energyen_GB
dc.titleFast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approachen_GB
dc.typeArticleen_GB
dc.date.available2009-01-16T16:30:42Zen_GB
dc.date.available2011-01-25T10:33:24Zen_GB
dc.date.available2013-03-20T12:29:03Z
dc.identifier.issn0021-8979en_GB
dc.descriptionCopyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 104 (2008) and may be found at http://link.aip.org/link/?JAPIAU/104/084901/1en_GB
dc.identifier.journalJournal of Applied Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record