Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach

DSpace/Manakin Repository

Open Research Exeter (ORE)

Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach

Show simple item record

dc.contributor.author Ashwin, Peter en_GB
dc.contributor.author Patnaik, B. S. V. en_GB
dc.contributor.author Wright, C. David en_GB
dc.contributor.department University of Exeter en_GB
dc.contributor.department Indian Institute of Technology, Madras en_GB
dc.date.accessioned 2009-01-16T16:30:42Z en_GB
dc.date.accessioned 2011-01-25T10:33:24Z en_US
dc.date.accessioned 2013-03-20T12:29:03Z
dc.date.issued 2008 en_GB
dc.description.abstract A stochastic cellular automata simulator capable of spatiotemporal modeling of the crystallization and amorphization behavior of phase-change materials during the complex annealing cycles used in optical and electrical memory applications is presented. This is based on consideration of bulk and surface energies to generate rates of growth and decay of crystallites built up from “monomers” that may themselves be quite complex molecules. The approach uses a stochastic Gillespie-type time-stepping algorithm to deal with events that may occur on a very wide range of time scales. The simulations are performed at molecular length scale and using an approximation of local free energy changes that depend only on immediate neighbors. The approach is potentially capable of spanning the length scales between ab initio atomistic modeling methods, such as density functional theory, and bulk-scale methods, such the Johnshon–Mehl–Avrami–Kolmogorov formalism. As an example the model is used to predict the crystallization behavior in the chalcogenide Ge2Sb2Te5 alloy commonly used in phase-change memory devices. The simulations include annealing cycles with nontrivial spatial and temporal variations in temperature, with good agreement to experimental incubation times at low temperatures while modeling nontrivial crystal size distributions and melting dynamics at higher temperatures. en_GB
dc.identifier.citation 104 (8), article 084901 en_GB
dc.identifier.doi 10.1063/1.2978334 en_GB
dc.identifier.uri http://hdl.handle.net/10036/47619 en_GB
dc.language.iso en en_GB
dc.publisher American Institute of Physics en_GB
dc.relation.url http://dx.doi.org/10.1063/1.2978334 en_GB
dc.relation.url http://link.aip.org/link/?JAPIAU/104/084901/1 en_GB
dc.subject ab initio calculations en_GB
dc.subject amorphisation en_GB
dc.subject annealing en_GB
dc.subject cellular automata en_GB
dc.subject chalcogenide glasses en_GB
dc.subject crystallisation en_GB
dc.subject crystallites en_GB
dc.subject density functional theory en_GB
dc.subject free energy en_GB
dc.subject phase change materials en_GB
dc.subject spatiotemporal phenomena en_GB
dc.subject stochastic processes en_GB
dc.subject surface energy en_GB
dc.title Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach en_GB
dc.type Article en_GB
dc.date.available 2009-01-16T16:30:42Z en_GB
dc.date.available 2011-01-25T10:33:24Z en_US
dc.date.available 2013-03-20T12:29:03Z
dc.identifier.issn 0021-8979 en_GB
dc.description Copyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 104 (2008) and may be found at http://link.aip.org/link/?JAPIAU/104/084901/1 en_GB
dc.identifier.journal Journal of Applied Physics en_GB


Files in this item

Files Size Format View
Fast simulation of phase-change.pdf 1.497Mb PDF Thumbnail

This item appears in the following Collection(s)

Show simple item record

Browse

My Account

Local Links