Show simple item record

dc.contributor.authorTurner, M. R.en_GB
dc.contributor.authorGilbert, Andrew D.en_GB
dc.contributor.authorThuburn, Johnen_GB
dc.contributor.departmentUniversity of Exeteren_GB
dc.date.accessioned2009-03-19T16:32:19Zen_GB
dc.date.accessioned2011-01-25T10:33:32Zen_GB
dc.date.accessioned2013-03-20T12:27:00Z
dc.date.issued2008-10-15en_GB
dc.description.abstractThe advection of a tracer field in a fluid flow can create complex scalar structures and increase the effect of weak diffusion by orders of magnitude. One tool to quantify this is to measure the flux of scalar across contour lines of constant scalar. This gives a diffusion equation in area coordinates with an effective diffusion that depends on the structure of the scalar field and, in particular, takes large values when scalar contours become very extended. The present paper studies the properties of this effective diffusion using a mixture of analytical and numerical tools. First the presence of hyperbolic stationary points, that is, saddles, in the scalar concentration field is investigated analytically, and it is shown that these give rise to singular spikes in the effective diffusion. This is confirmed in numerical simulations in which complex scalar fields are generated using a time-periodic flow. Issues of numerical resolution are discussed and results are given on the dependence of the effective diffusion on grid resolution and discretization in area or scalar values. These simulations show complex dependence of the effective diffusion on time as saddle points appear and disappear in the scalar field. It is found that time averaging (in the presence of an additional scalar source term) removes this dependence to leave robust results for the effective diffusion.en_GB
dc.identifier.citationVol. 20 (10), article 107103en_GB
dc.identifier.doi10.1063/1.2998461en_GB
dc.identifier.urihttp://hdl.handle.net/10036/56441en_GB
dc.language.isoenen_GB
dc.publisherAmerican Institute of Physicsen_GB
dc.subjectChaosen_GB
dc.subjectDiffusionen_GB
dc.subjectFlow simulationen_GB
dc.subjectPulsatile flowen_GB
dc.titleEffective diffusion of scalar fields in a chaotic flowen_GB
dc.typeArticleen_GB
dc.date.available2009-03-19T16:32:19Zen_GB
dc.date.available2011-01-25T10:33:32Zen_GB
dc.date.available2013-03-20T12:27:00Z
dc.identifier.issn1070-6631en_GB
dc.descriptionCopyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Fluids 20 (2008) and may be found at http://link.aip.org/link/?PHFLE6/20/107103/1en_GB
dc.identifier.journalPhysics of Fluidsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record