Show simple item record

dc.contributor.authorAyliffe, Benjamin A.
dc.contributor.authorBate, Matthew R.
dc.date.accessioned2013-06-10T14:08:46Z
dc.date.issued2009-01-21
dc.description.abstractWe present results from three-dimensional, self-gravitating radiation hydrodynamical models of gas accretion by planetary cores. In some cases, the accretion flow is resolved down to the surface of the solid core – the first time such simulations have been performed. We investigate the dependence of the gas accretion rate upon the planetary core mass, and the surface density and opacity of the encompassing protoplanetary disc. Accretion of planetesimals is neglected. We find that high-mass protoplanets are surrounded by thick circumplanetary discs during their gas accretion phase but, contrary to locally isothermal calculations, discs do not form around accreting protoplanets with masses ≲50M ⊕ when radiation hydrodynamical simulations are performed, even if the grain opacity is reduced from interstellar values by a factor of 100. We find that the opacity of the gas plays a large role in determining the accretion rates for low-mass planetary cores. For example, reducing the opacities from interstellar values by a factor of 100 leads to roughly an order of magnitude increase in the accretion rates for 10-20M ⊕ protoplanets. The dependence on opacity becomes less important in determining the accretion rate for more massive cores where gravity dominates the effects of thermal support and the protoplanet is essentially accreting at the runaway rate. Increasing the core mass from 10 to 100 M ⊕ increases the accretion rate by a factor of ≈50 for interstellar opacities. Beyond ~100 M ⊕, the ability of the protoplanetary disc to supply material to the accreting protoplanet limits the accretion rate, independent of the opacity. Finally, for low-mass planetary cores (≲20 M ⊕), we obtain accretion rates that are in agreement with previous one-dimensional quasi-static models. This indicates that three-dimensional hydrodynamical effects may not significantly alter the gas accretion time-scales that have been obtained from quasi-static models.en_GB
dc.identifier.citationVol. 393 (1), pp. 49 - 64en_GB
dc.identifier.doi10.1111/j.1365-2966.2008.14184.x
dc.identifier.urihttp://hdl.handle.net/10871/10022
dc.language.isoenen_GB
dc.publisherOxford University Press / Royal Astronomical Societyen_GB
dc.subjectaccretion, accretion discsen_GB
dc.subjecthydrodynamicsen_GB
dc.subjectradiative transferen_GB
dc.subjectmethods: numericalen_GB
dc.subjectplanets and satellites: formationen_GB
dc.subjectplanetary systems: formationen_GB
dc.titleGas accretion on to planetary cores: Three-dimensional self-gravitating radiation hydrodynamical calculationsen_GB
dc.typeArticleen_GB
dc.date.available2013-06-10T14:08:46Z
dc.identifier.issn0035-8711
dc.descriptionCopyright © 2009 Royal Astronomical Societyen_GB
dc.identifier.eissn1365-2966
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record