Show simple item record

dc.contributor.authorPhilbin, Thomas G.
dc.contributor.authorXiong, C.
dc.contributor.authorLeonhardt, Ulf
dc.date.accessioned2013-06-21T13:41:29Z
dc.date.issued2010
dc.description.abstractThe Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.en_GB
dc.identifier.citationVol. 325 (3), pp. 579–595en_GB
dc.identifier.doi10.1016/j.aop.2009.11.006
dc.identifier.urihttp://hdl.handle.net/10871/11314
dc.language.isoenen_GB
dc.publisherElsevier Massonen_GB
dc.relation.urlhttp://dx.doi.org/10.1016/j.aop.2009.11.006en_GB
dc.relation.urlhttp://arxiv.org/abs/0909.2998v1en_GB
dc.subjectCasimir effecten_GB
dc.subjectQuantum vacuumen_GB
dc.subjectLifshitz theoryen_GB
dc.subjectInhomogeneous mediaen_GB
dc.titleCasimir stress in an inhomogeneous mediumen_GB
dc.typeArticleen_GB
dc.date.available2013-06-21T13:41:29Z
dc.identifier.issn0003-4916
dc.descriptionCopyright © 2010 Elsevieren_GB
dc.identifier.journalAnnals of Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record