Show simple item record

dc.contributor.authorSchetinin, Vitaly
dc.contributor.authorFieldsend, Jonathan E.
dc.contributor.authorPartridge, Derek
dc.contributor.authorKrzanowski, Wojtek J.
dc.contributor.authorBailey, Trevor C.
dc.contributor.authorEverson, Richard M.
dc.contributor.authorHernandez, Adolfo
dc.date.accessioned2013-06-27T13:47:39Z
dc.date.issued2006-11-01
dc.description.abstractUncertainty of decisions in safety-critical engineering applications can be estimated on the basis of the Bayesian Markov Chain Monte Carlo (MCMC) technique of averaging over decision models. The use of decision tree (DT) models assists experts to interpret causal relations and find factors of the uncertainty. Bayesian averaging also allows experts to estimate the uncertainty accurately when a priori information on the favored structure of DTs is available. Then an expert can select a single DT model, typically the Maximum a Posteriori model, for interpretation purposes. Unfortunately, a priori information on favored structure of DTs is not always available. For this reason, we suggest a new prior on DTs for the Bayesian MCMC technique. We also suggest a new procedure of selecting a single DT and describe an application scenario. In our experiments on real data our technique outperforms the existing Bayesian techniques in predictive accuracy of the selected single DTs.
dc.identifier.citationIn: Integrated Intelligent Systems for Engineering Design (editors: Zha, X.F. and Howlett, R.J.), chapter 5 (pp. 82 - 96)en_GB
dc.identifier.urihttp://hdl.handle.net/10871/11423
dc.language.isoenen_GB
dc.publisherIOS Pressen_GB
dc.relation.urlhttps://ebooks.iospress.nl/volumearticle/3178
dc.relation.urlhttp://hdl.handle.net/10871/20267
dc.subjectuncertaintyen_GB
dc.subjectdecision treeen_GB
dc.subjectBayesian averagingen_GB
dc.subjectMCMCen_GB
dc.titleA Bayesian Methodology for Estimating Uncertainty of Decisions in Safety-Critical Systemsen_GB
dc.typeBook chapteren_GB
dc.date.available2013-06-27T13:47:39Z
dc.contributor.editorZha, XF
dc.contributor.editorHowlett, RJ
dc.identifier.isbn9781586036751
dc.relation.isPartOfIntegrated Intelligent Systems for Engineering Design
pubs.declined2016-03-07T10:00:35.724+0000
pubs.deleted2016-03-07T10:00:36.276+0000
dc.descriptionFrontiers in Artificial Intelligence and Applications vol. 149
dc.descriptionThere is another ORE record for this chapter: http://hdl.handle.net/10871/20267


Files in this item

This item appears in the following Collection(s)

Show simple item record