dc.contributor.author | Byott, Nigel P. | |
dc.contributor.author | Sodaigui, Bouchaib | |
dc.date.accessioned | 2013-07-15T12:19:12Z | |
dc.date.issued | 2013-05-13 | |
dc.description.abstract | Given an algebraic number field k and a finite group Γ, we write ℛ(O k [Γ]) for the subset of the locally free classgroup Cl(O k [Γ]) consisting of the classes of rings of integers O N in tame Galois extensions N/k with Gal(N/k)≅Γ. We determine ℛ(O k [Γ]), and show it is a subgroup of Cl(O k [Γ]) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ=V⋊C, where V is an elementary abelian group of order p r and C is a cyclic group of order m>1 acting faithfully on V and making V into an irreducible 𝔽 p [C]-module. This extends and refines results of Byott, Greither and Sodaïgui for p=2 in Crelle, respectively of Bruche and Sodaïgui for p>2 in J. Number Theory, which cover only the case m=p r -1 and determine only the image ℛ(ℳ) of ℛ(O k [Γ]) under extension of scalars from O k [Γ] to a maximal order ℳ⊃O k [Γ] in k[Γ]. The main result here thus generalizes the calculation of ℛ(O k [A 4 ]) for the alternating group A 4 of degree 4 (the case p=r=2) given by Byott and Sodaïgui in Compositio. | en_GB |
dc.identifier.citation | Vol. 63 (1), pp. 303-371 | en_GB |
dc.identifier.doi | 10.5802/aif.2762 | |
dc.identifier.uri | http://hdl.handle.net/10871/11745 | |
dc.language.iso | en | en_GB |
dc.publisher | Association des Annales de l'Institut Fourier | en_GB |
dc.subject | Galois module structure | en_GB |
dc.subject | Rings of algebraic integers | en_GB |
dc.subject | Locally free classgroup | en_GB |
dc.subject | Fröhlich-Lagrange resolvent | en_GB |
dc.subject | Realizable classes | en_GB |
dc.subject | Embedding problem | en_GB |
dc.subject | Stickelberger ideal | en_GB |
dc.subject | Cyclic codes | en_GB |
dc.title | Realizable Galois module classes over the group ring for non abelian extensions | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2013-07-15T12:19:12Z | |
dc.description | Copyright © 2013 Association des Annales de l'Institut Fourier | en_GB |
dc.identifier.eissn | 1777-5310 | |
dc.identifier.journal | Annales de l'institut Fourier | en_GB |
refterms.dateFOA | 2024-03-12T13:11:10Z | |