Show simple item record

dc.contributor.authorByott, Nigel P.
dc.contributor.authorSodaigui, Bouchaib
dc.date.accessioned2013-07-15T12:19:12Z
dc.date.issued2013-05-13
dc.description.abstractGiven an algebraic number field k and a finite group Γ, we write ℛ(O k [Γ]) for the subset of the locally free classgroup Cl(O k [Γ]) consisting of the classes of rings of integers O N in tame Galois extensions N/k with Gal(N/k)≅Γ. We determine ℛ(O k [Γ]), and show it is a subgroup of Cl(O k [Γ]) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ=V⋊C, where V is an elementary abelian group of order p r and C is a cyclic group of order m>1 acting faithfully on V and making V into an irreducible 𝔽 p [C]-module. This extends and refines results of Byott, Greither and Sodaïgui for p=2 in Crelle, respectively of Bruche and Sodaïgui for p>2 in J. Number Theory, which cover only the case m=p r -1 and determine only the image ℛ(ℳ) of ℛ(O k [Γ]) under extension of scalars from O k [Γ] to a maximal order ℳ⊃O k [Γ] in k[Γ]. The main result here thus generalizes the calculation of ℛ(O k [A 4 ]) for the alternating group A 4 of degree 4 (the case p=r=2) given by Byott and Sodaïgui in Compositio.en_GB
dc.identifier.citationVol. 63 (1), pp. 303-371en_GB
dc.identifier.doi10.5802/aif.2762
dc.identifier.urihttp://hdl.handle.net/10871/11745
dc.language.isoenen_GB
dc.publisherAssociation des Annales de l'Institut Fourieren_GB
dc.subjectGalois module structureen_GB
dc.subjectRings of algebraic integersen_GB
dc.subjectLocally free classgroupen_GB
dc.subjectFröhlich-Lagrange resolventen_GB
dc.subjectRealizable classesen_GB
dc.subjectEmbedding problemen_GB
dc.subjectStickelberger idealen_GB
dc.subjectCyclic codesen_GB
dc.titleRealizable Galois module classes over the group ring for non abelian extensionsen_GB
dc.typeArticleen_GB
dc.date.available2013-07-15T12:19:12Z
dc.descriptionCopyright © 2013 Association des Annales de l'Institut Fourieren_GB
dc.identifier.eissn1777-5310
dc.identifier.journalAnnales de l'institut Fourieren_GB
refterms.dateFOA2024-03-12T13:11:10Z


Files in this item

This item appears in the following Collection(s)

Show simple item record