Show simple item record

dc.contributor.authorKatz, JN
dc.contributor.authorKatz, Gabriel
dc.date.accessioned2012-11-14T10:55:58Zen_GB
dc.date.accessioned2013-03-20T16:32:51Z
dc.date.accessioned2013-07-25T15:26:44Z
dc.date.issued2010-06-21
dc.description.abstractMisreporting is a problem that plagues researchers who use survey data. In this article, we develop a parametric model that corrects for misclassified binary responses using information on the misreporting patterns obtained from auxiliary data sources. The model is implemented within the Bayesian framework via Markov Chain Monte Carlo (MCMC) methods and can be easily extended to address other problems exhibited by survey data, such as missing response and/or covariate values. While the model is fully general, we illustrate its application in the context of estimating models of turnout using data from the American National Elections Studies. ©2010, Midwest Political Science Association.en_GB
dc.identifier.citationVol. 54, Issue 3, pp. 815 - 835en_GB
dc.identifier.doi10.1111/j.1540-5907.2010.00462.x
dc.identifier.urihttp://hdl.handle.net/10871/12064
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.relation.replaceshttp://hdl.handle.net/10036/3997en_GB
dc.subjectMarkov Chain Monte Carloen_GB
dc.subjectBayesianen_GB
dc.subjectMisreportingen_GB
dc.subjectTurnouten_GB
dc.titleCorrecting for survey misreports using auxiliary information with an application to estimating turnouten_GB
dc.typeArticleen_GB
dc.date.available2012-11-14T10:55:58Zen_GB
dc.date.available2013-03-20T16:32:51Z
dc.date.available2013-07-25T15:26:44Z
dc.identifier.issn0092-5853
dc.identifier.journalAmerican Journal of Political Scienceen_GB
refterms.dateFOA2025-01-17T15:53:07Z


Files in this item

This item appears in the following Collection(s)

Show simple item record