Hopf-Galois structures of squarefree degree
dc.contributor.author | Alabdali, AA | |
dc.contributor.author | Byott, NP | |
dc.date.accessioned | 2020-04-27T10:15:30Z | |
dc.date.issued | 2020-04-29 | |
dc.description.abstract | Let n be a squarefree natural number, and let G, Γ be two groups of order n. We determine the number of Hopf-Galois structures of type G admitted by a Galois extension of fields with Galois group isomorphic to Γ. We give some examples, including a full treatment of the case where n is the product of three primes. | en_GB |
dc.identifier.citation | Vol. 559, pp. 58-86 | en_GB |
dc.identifier.doi | 10.1016/j.jalgebra.2020.04.019 | |
dc.identifier.uri | http://hdl.handle.net/10871/120816 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights.embargoreason | Under embargo until 29 April 2021 in compliance with publisher policy | en_GB |
dc.rights | © 2020. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_GB |
dc.subject | Hopf-Galois structures | en_GB |
dc.subject | field extensions | en_GB |
dc.subject | groups of squarefree order | en_GB |
dc.title | Hopf-Galois structures of squarefree degree | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-04-27T10:15:30Z | |
dc.identifier.issn | 0021-8693 | |
dc.description | This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record | en_GB |
dc.identifier.journal | Journal of Algebra | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_GB |
dcterms.dateAccepted | 2020-04-22 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2020-04-22 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-04-27T10:13:12Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2021-04-28T23:00:00Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2020. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/