Show simple item record

dc.contributor.authorEager, J
dc.contributor.authorReichelt, D
dc.contributor.authorMayne, N
dc.contributor.authorLambert, F
dc.contributor.authorSergeev, D
dc.contributor.authorRidgway, R
dc.contributor.authorManners, J
dc.contributor.authorBoutle, I
dc.contributor.authorLenton, T
dc.contributor.authorKohary, K
dc.date.accessioned2020-05-26T11:57:20Z
dc.date.issued2020-07-16
dc.description.abstractThe majority of potentially habitable exoplanets detected orbit stars cooler than the Sun, and therefore are irradiated by a stellar spectrum peaking at longer wavelengths than that incident on Earth. Here we present results from a set of simulations of tidally–locked terrestrial planets orbiting three di erent host stars to isolate the e ect of the stellar spectra on the simulated climate. Specifically, we perform simulations based on TRAPPIST–1e, adopting an Earth-like atmosphere and using the UK Met O ce Unified Model in an idealised ‘aqua–planet’ configuration. Whilst holding the planetary parameters constant, including the total stellar flux (900 W/m2) and orbital period (6.10 Earth days), we compare results between simulations where the stellar spectrum is that of a quiescent TRAPPIST–1, Proxima Centauri and the Sun. The simulations with cooler host stars had an increased proportion of incident stellar radiation absorbed directly by the troposphere compared to the surface. This, in turn, led to an increase in the stability against convection, a reduction in overall cloud coverage on the dayside (reducing scattering), leading to warmer surface temperatures. The increased direct heating of the troposphere also led to more e cient heat transport from the dayside to the nightside and, therefore, a reduced day–night temperature contrast. We inferred that planets with an Earth–like atmosphere orbiting cooler stars had lower dayside cloud coverage, potentially allowing habitable conditions at increased orbital radii, compared to similar planets orbiting hotter stars for a given planetary rotation rate.en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.identifier.citationVol. 639, article A99en_GB
dc.identifier.doi10.1051/0004-6361/202038089
dc.identifier.grantnumberST/K000373/1en_GB
dc.identifier.grantnumberST/R002363/1en_GB
dc.identifier.grantnumberST/R001014/1en_GB
dc.identifier.grantnumberST/R000395/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/121164
dc.language.isoenen_GB
dc.publisherEuropean Southern Observatory (ESO) /EDP Sciencesen_GB
dc.relation.urlhttps://doi.org/10.24378/exe.2383en_GB
dc.rights© ESO 2020
dc.subjectExoplanetsen_GB
dc.subjectAtmospheresen_GB
dc.subjectClimateen_GB
dc.subjectTRAPPIST–1een_GB
dc.subjectProxima Centaurien_GB
dc.subjectHabitabilityen_GB
dc.subjectTidally–lockeden_GB
dc.titleImplications of different stellar spectra for the climate of tidally locked Earth-like exoplanets (article)en_GB
dc.typeArticleen_GB
dc.date.available2020-05-26T11:57:20Z
dc.identifier.issn0004-6361
dc.descriptionThis is the final version. Available from EDP Sciences via the DOI in this recorden_GB
dc.descriptionThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.2383en_GB
dc.identifier.journalAstronomy and Astrophysicsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-05-23
exeter.funder::Leverhulme Trusten_GB
exeter.funder::Science and Technology Facilities Councilen_GB
exeter.funder::Leverhulme Trusten_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-05-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-05-26T09:28:27Z
refterms.versionFCDAM
refterms.dateFOA2020-07-31T10:34:22Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record