Show simple item record

dc.contributor.authorKlewe, C
dc.contributor.authorLi, Q
dc.contributor.authorYang, M
dc.contributor.authorN’Diaye, AT
dc.contributor.authorBurn, DM
dc.contributor.authorHesjedal, T
dc.contributor.authorFigueroa, AI
dc.contributor.authorHwang, C
dc.contributor.authorLi, J
dc.contributor.authorHicken, RJ
dc.contributor.authorShafer, P
dc.contributor.authorArenholz, E
dc.contributor.authorvan der Laan, G
dc.contributor.authorQiu, Z
dc.date.accessioned2020-06-11T15:36:09Z
dc.date.issued2020-04-05
dc.description.abstractThe technique of x-ray detected ferromagnetic resonance (XFMR) represents an indispensable new tool in the investigation of spin current effects in complex heterostructures, as it enables the observation of magnetization and spin dynamics with element-, site-, and valence state-specificity. Here we give an overview of the development of XFMR and characterize different approaches to measure spin dynamics using synchrotron radiation. We provide a detailed description of the working principle of the technique and give an overview of recent work carried out at beamline 4.0.2 of the Advanced Light Source and beamline I10 of the Diamond Light Source using XFMR. Results from our latest publications demonstrate the capabilities and sensitivity of the technique. Element- and phase-resolution provide intriguing insights into the mechanisms of spin current propagation in multilayers, while the high sensitivity of XFMR allows for detection of even miniscule signals. Most recently, the utilization of linearly polarized x-rays for XFMR and the detection of XFMR by means of x-ray diffraction rather than x-ray absorption demonstrate two new capabilities in the investigation of spin dynamics.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipUS Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Divisionen_GB
dc.description.sponsorshipNational Research Foundation of Koreaen_GB
dc.identifier.citationVol. 33 (2), pp. 12 - 19en_GB
dc.identifier.doi10.1080/08940886.2020.1725796
dc.identifier.grantnumberEP/P021190/1en_GB
dc.identifier.grantnumberEP/P020151/1en_GB
dc.identifier.grantnumberEP/P02047X/1en_GB
dc.identifier.grantnumberDE-AC02-05CH11231en_GB
dc.identifier.grantnumber2015M3D1A1070467en_GB
dc.identifier.grantnumber2015R1A5A1009962en_GB
dc.identifier.urihttp://hdl.handle.net/10871/121370
dc.language.isoenen_GB
dc.publisherTaylor & Francisen_GB
dc.rights.embargoreasonUnder embargo until 5 April 2021 in compliance with publisher policyen_GB
dc.rights© 2020 Taylor & Francisen_GB
dc.titleElement- and Time-Resolved Measurements of Spin Dynamics Using X-ray Detected Ferromagnetic Resonanceen_GB
dc.typeArticleen_GB
dc.date.available2020-06-11T15:36:09Z
dc.identifier.issn0894-0886
dc.descriptionThis is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recorden_GB
dc.identifier.journalSynchrotron Radiation Newsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-04-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-06-11T15:28:38Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record