dc.contributor.author | Berger, MA | |
dc.date.accessioned | 2020-08-04T12:17:37Z | |
dc.date.issued | 1994-12-01 | |
dc.description.abstract | Given a braid on N strings, find an algorithm which generates an Artin braid word B of minimal length. This is an important unsolved problem-a solution would give us the most economical way of notating and drawing braids. The length of an Artin word equals the number of crossings seen in a braid diagram. Minimum crossing numbers provide a measure of complexity for braids. This paper presents an algorithm for N=3. A three-dimensional configuration space for 3-braids will also be defined and analysed. | en_GB |
dc.identifier.citation | Vol. 27 (18), pp. 6205 - 6213 | en_GB |
dc.identifier.doi | 10.1088/0305-4470/27/18/028 | |
dc.identifier.uri | http://hdl.handle.net/10871/122305 | |
dc.language.iso | en | en_GB |
dc.publisher | IOP Publishing | en_GB |
dc.rights | @ 1994 IOP Publishing Ltd | en_GB |
dc.title | Minimum crossing numbers for 3-braids | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-08-04T12:17:37Z | |
dc.identifier.issn | 0305-4470 | |
dc.description | This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record | en_GB |
dc.identifier.journal | Journal of Physics A: General Physics | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 1994-12-01 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-08-04T12:16:35Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2020-08-04T12:17:45Z | |
refterms.panel | B | en_GB |