Show simple item record

dc.contributor.authorBerger, MA
dc.date.accessioned2020-08-04T12:17:37Z
dc.date.issued1994-12-01
dc.description.abstractGiven a braid on N strings, find an algorithm which generates an Artin braid word B of minimal length. This is an important unsolved problem-a solution would give us the most economical way of notating and drawing braids. The length of an Artin word equals the number of crossings seen in a braid diagram. Minimum crossing numbers provide a measure of complexity for braids. This paper presents an algorithm for N=3. A three-dimensional configuration space for 3-braids will also be defined and analysed.en_GB
dc.identifier.citationVol. 27 (18), pp. 6205 - 6213en_GB
dc.identifier.doi10.1088/0305-4470/27/18/028
dc.identifier.urihttp://hdl.handle.net/10871/122305
dc.language.isoenen_GB
dc.publisherIOP Publishingen_GB
dc.rights@ 1994 IOP Publishing Ltden_GB
dc.titleMinimum crossing numbers for 3-braidsen_GB
dc.typeArticleen_GB
dc.date.available2020-08-04T12:17:37Z
dc.identifier.issn0305-4470
dc.descriptionThis is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recorden_GB
dc.identifier.journalJournal of Physics A: General Physicsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate1994-12-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-08-04T12:16:35Z
refterms.versionFCDAM
refterms.dateFOA2020-08-04T12:17:45Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record