Show simple item record

dc.contributor.authorEklund, H
dc.contributor.authorWedemeyer, S
dc.contributor.authorSnow, B
dc.contributor.authorJess, DB
dc.contributor.authorJafarzadeh, S
dc.contributor.authorGrant, SDT
dc.contributor.authorCarlsson, M
dc.contributor.authorSzydlarsk, M
dc.date.accessioned2020-08-26T12:58:42Z
dc.date.issued2020-12-21
dc.description.abstractObservations at millimetre wavelengths provide a valuable tool to study the small scale dynamics in the solar chromosphere. We evaluate the physical conditions of the atmosphere in the presence of a propagating shock wave and link that to the observable signatures in mm-wavelength radiation, providing valuable insights into the underlying physics of mm-wavelength observations. A realistic numerical simulation from the 3D radiative Magnetohydrodynamic (MHD) code Bifrost is used to interpret changes in the atmosphere caused by shock wave propagation. High-cadence (1 s) time series of brightness temperature (Tb ) maps are calculated with the Advanced Radiative Transfer (ART) code at the wavelengths 1.309 mm and 1.204 mm, which represents opposite sides of spectral band 6 of the Atacama Large Millimeter/submillimeter Array (ALMA). An example of shock wave propagation is presented. The brightness temperatures show a strong shock wave signature with large variation in formation height between ∼ 0.7 to 1.4 Mm. The results demonstrate that millimetre brightness temperatures efficiently track upwardly propagating shock waves in the middle chromosphere. In addition, we show that the gradient of the brightness temperature between wavelengths within ALMA band 6 can potentially be utilised as a diagnostics tool in understanding the small-scale dynamics at the sampled layers.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipResearch Council of Norwayen_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.identifier.citationVol. 379 (2190), article 20200185
dc.identifier.doi10.1098/rsta.2020.0185
dc.identifier.grantnumber682462en_GB
dc.identifier.grantnumber262622en_GB
dc.identifier.grantnumberST/R000891/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/122643
dc.language.isoenen_GB
dc.publisherRoyal Societyen_GB
dc.relation.urlhttp://sdc.uio.no/search/simulationsen_GB
dc.rights© 2020 The Author(s). Published by the Royal Society. All rights reserved.
dc.subjectshock wavesen_GB
dc.subjectmethods: numericalen_GB
dc.subjectSun: chromosphereen_GB
dc.subjectSun: photosphereen_GB
dc.subjectSun: radio radiationen_GB
dc.titleCharacterisation of shockwave signatures at millimetre wavelengths from Bifrost simulationsen_GB
dc.typeArticleen_GB
dc.date.available2020-08-26T12:58:42Z
dc.identifier.issn1364-503X
dc.descriptionThis is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recorden_GB
dc.descriptionData Accessibility. The Bifrost simulation with 10 s cadence is publicly available at: http://sdc.uio.no/search/simulationsen_GB
dc.identifier.journalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-08-10
exeter.funder::Science and Technology Facilities Councilen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-08-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-08-26T09:01:14Z
refterms.versionFCDAM
refterms.dateFOA2021-01-14T15:43:01Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record