Show simple item record

dc.contributor.authorGalatolo, S
dc.contributor.authorHolland, M
dc.contributor.authorPersson, T
dc.contributor.authorZhang, Y
dc.date.accessioned2020-09-29T07:47:26Z
dc.date.issued2020-10-14
dc.description.abstractWe establish quantitative results for the statistical behaviour of infinite systems. We consider two kinds of infinite system: i) a conservative dynamical system (f, X, µ) preserving a σ-finite measure µ such that µ(X) = ∞; ii) the case where µ is a probability measure but we consider the statistical behaviour of an observable φ: X → [0, ∞) which is non-integrable: R φ dµ = ∞. In the first part of this work we study the behaviour of Birkhoff sums of systems of the kind ii). For certain weakly chaotic systems, we show that these sums can be strongly oscillating. However, if the system has superpolynomial decay of correlations or has a Markov structure, then we show this oscillation cannot happen. In this case we prove a general relation between the behavior of φ, the local dimension of µ, and the scaling rate of the growth of Birkhoff sums of φ as time tends to infinity. We then establish several important consequences which apply to infinite systems of the kind i). This includes showing anomalous scalings in extreme event limit laws, or entrance time statistics. We apply our findings to non-uniformly hyperbolic systems preserving an infinite measure, establishing anomalous scalings for the power law behavior of entrance times (also known as logarithm laws), dynamical Borel–Cantelli lemmas, almost sure growth rates of extremes, and dynamical run length functions.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipGNAMPA-INdAMen_GB
dc.description.sponsorshipUniversity of Pisaen_GB
dc.description.sponsorshipUniversity of Houstonen_GB
dc.description.sponsorshipInstitut Mittag-Leffleren_GB
dc.description.sponsorshipNSFCen_GB
dc.description.sponsorshipUniversity of Warwicken_GB
dc.description.sponsorshipUniversity of Exeteren_GB
dc.description.sponsorshipCentre Physique Theorique, Marseilleen_GB
dc.identifier.citationAwaiting full citation and licenceen_GB
dc.identifier.doi10.3934/dcds.2020341
dc.identifier.grantnumberEP/P034489/1en_GB
dc.identifier.grantnumber11701200en_GB
dc.identifier.grantnumber11871262en_GB
dc.identifier.urihttp://hdl.handle.net/10871/123024
dc.language.isoenen_GB
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)en_GB
dc.rights.embargoreasonUnder embargo until 14 October 2021 in compliance with publisher policyen_GB
dc.rights© 2020 American Institute of Mathematical Sciences
dc.subjectConservative dynamicsen_GB
dc.subjectinfinite invariant measureen_GB
dc.subjectBirkhoff sumen_GB
dc.subjectLogatithm lawen_GB
dc.subjecthitting timeen_GB
dc.subjectextreme valuesen_GB
dc.subjectBorel–Cantellien_GB
dc.subjectintermittent systemen_GB
dc.subjectRun lengthen_GB
dc.titleAnomalous time-scaling of extreme events in infinite systems and Birkhoff sums of infinite observablesen_GB
dc.typeArticleen_GB
dc.date.available2020-09-29T07:47:26Z
dc.identifier.issn1078-0947
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Institute of Mathematical Sciences via the DOI in this recorden_GB
dc.identifier.journalDiscrete and Continuous Dynamical Systems Series Aen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-08-17
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-08-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-09-28T14:25:39Z
refterms.versionFCDAM
refterms.dateFOA2021-10-13T23:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record