dc.contributor.author | Marchand, P | |
dc.contributor.author | Tomida, K | |
dc.contributor.author | Tanaka, KEI | |
dc.contributor.author | Commerçon, B | |
dc.contributor.author | Chabrier, G | |
dc.date.accessioned | 2020-11-12T15:35:52Z | |
dc.date.issued | 2020-09-15 | |
dc.description.abstract | Through the magnetic braking and the launching of protostellar outflows, magnetic fields play a major role in the regulation of angular momentum in star formation, which directly impacts the formation and evolution of protoplanetary disks and binary systems. The aim of this paper is to quantify those phenomena in the presence of nonideal magnetohydrodynamics effects, namely, the ohmic and ambipolar diffusion. We perform three-dimensional simulations of protostellar collapses varying the mass of the prestellar dense core, the thermal support (the α ratio), and the dust grain size distribution. The mass mostly influences the magnetic braking in the pseudo-disk, while the thermal support impacts the accretion rate and hence the properties of the disk. Removing the grains smaller than 0.1 μm in the Mathis-Rumpl-Nordsieck distribution enhances the ambipolar diffusion coefficient. Similar to previous studies, we find that this change in the distribution reduces the magnetic braking with an impact on the disk. The outflow is also significantly weakened. In either case, the magnetic braking largely dominates the outflow as a process to remove the angular momentum from the disk. Finally, we report a large ionic precursor to the outflow with velocities of several km s-1, which may be observable. | en_GB |
dc.description.sponsorship | Japan Society for the Promotion of Science (JSPS) | en_GB |
dc.description.sponsorship | CNRS/INSU | en_GB |
dc.description.sponsorship | CEA | en_GB |
dc.description.sponsorship | CNES, France | en_GB |
dc.description.sponsorship | American Museum of Natural History | en_GB |
dc.description.sponsorship | NAOJ ALMA | en_GB |
dc.identifier.citation | Vol. 900 (2), article 180 | en_GB |
dc.identifier.doi | 10.3847/1538-4357/abad99 | |
dc.identifier.grantnumber | P17802 | en_GB |
dc.identifier.grantnumber | 16H05998 | en_GB |
dc.identifier.grantnumber | 16K13786 | en_GB |
dc.identifier.grantnumber | 17KK0091 | en_GB |
dc.identifier.grantnumber | 18H05440 | en_GB |
dc.identifier.grantnumber | 2017-05A | en_GB |
dc.identifier.grantnumber | JP19H05080 | en_GB |
dc.identifier.grantnumber | JP19K14760 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/123599 | |
dc.language.iso | en | en_GB |
dc.publisher | American Astronomical Society / IOP Publishing | en_GB |
dc.rights.embargoreason | Under embargo until 15 September 2021 in compliance with publisher policy | en_GB |
dc.rights | © 2020. The American Astronomical Society. All rights reserved. | en_GB |
dc.title | Protostellar Collapse: Regulation of the Angular Momentum and Onset of an Ionic Precursor | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-11-12T15:35:52Z | |
dc.identifier.issn | 0004-637X | |
dc.description | This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record | en_GB |
dc.identifier.journal | Astrophysical Journal | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2020-08-07 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2020-09-15 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-11-12T15:31:30Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2021-09-14T23:00:00Z | |
refterms.panel | B | en_GB |