Show simple item record

dc.contributor.authorDabrowski, M
dc.contributor.authorFrisk, A
dc.contributor.authorBurn, DM
dc.contributor.authorNewman, DG
dc.contributor.authorKlewe, C
dc.contributor.authorN'Diaye, AT
dc.contributor.authorShafer, P
dc.contributor.authorArenholz, E
dc.contributor.authorBowden, GJ
dc.contributor.authorHesjedal, T
dc.contributor.authorvan der Laan, G
dc.contributor.authorHrkac, G
dc.contributor.authorHicken, RJ
dc.date.accessioned2020-11-18T11:16:18Z
dc.date.issued2020-11-06
dc.description.abstractMicrowave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 12 (45), pp. 52116−52124en_GB
dc.identifier.doi10.1021/acsami.0c14058
dc.identifier.grantnumberEP/P021190/1en_GB
dc.identifier.grantnumberEP/P020151/1en_GB
dc.identifier.grantnumberEP/P02047X/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/123671
dc.language.isoenen_GB
dc.publisherAmerican Chemical Society (ACS)en_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/33156990en_GB
dc.rights.embargoreasonUnder embargo until 6 November 2021 in compliance with publisher policyen_GB
dc.rights© 2020 American Chemical Societyen_GB
dc.subjectX-ray detected ferromagnetic resonance (XFMR)en_GB
dc.subjectX-ray magnetic circular dichroism (XMCD)en_GB
dc.subjectexchange spring magnetsen_GB
dc.subjectferromagnetic resonanceen_GB
dc.subjectinterfacial domainsen_GB
dc.subjectspin transfer torque (STT)en_GB
dc.subjecttime-resolved magneto-optical Kerr effect (TRMOKE)en_GB
dc.titleOptically and microwave induced magnetization precession in [Co/Pt]/NiFe exchange springsen_GB
dc.typeArticleen_GB
dc.date.available2020-11-18T11:16:18Z
exeter.place-of-publicationUnited Statesen_GB
dc.descriptionThis is the final version. Available from the American Chemical Society via the DOI in this recorden_GB
dc.identifier.eissn1944-8252
dc.identifier.journalACS Applied Materials and Interfacesen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-10-23
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-11-06
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-11-18T11:12:56Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record