Show simple item record

dc.contributor.authorCotterell, MI
dc.contributor.authorSzpek, K
dc.contributor.authorTiddeman, DA
dc.contributor.authorHaywood, JM
dc.contributor.authorLangridge, JM
dc.date.accessioned2020-12-17T08:24:26Z
dc.date.issued2020-12-08
dc.description.abstractPhotoacoustic spectroscopy (PAS) is a sensitive technique for the detection of trace gases and aerosols and measurements of their absorption coefficients. The accuracy of such measurements is often governed by the fidelity of the PAS instrument calibration. Gas samples laden with O3 of a known or independently measured absorption coefficient are a convenient and commonplace route to calibration of PAS instruments operating at visible wavelengths (λ), yet the accuracy of such calibrations remains unclear. Importantly, the photoacoustic detection of O3 in the Chappuis band (λ ∼ 400–700 nm) depends strongly on the timescales for energy transfer from the nascent photoproducts O(3P) and O2(X, v > 0) to translational motion of bath gas species. Significant uncertainties remain concerning the dependence of these timescales on both the sample pressure and the bath gas composition. Here, we demonstrate accurate characterisation of microphone response function dependencies on pressure using a speaker transducer to excite resonant acoustic modes of our photoacoustic cells. These corrections enable measurements of photoacoustic response amplitudes (also referred to as PAS sensitivities) and phase shifts with variation in static pressure and bath gas composition, at discrete visible wavelengths spanning the Chappuis band. We develop and fit a photochemical relaxation model to these measurements to retrieve the associated variations in the aforementioned relaxation timescales for O(3P) and O2(X, v > 0). These timescales enable a full assessment of the accuracy of PAS calibrations using O3-laden gas samples, dependent on the sample pressure, bath gas composition and PAS laser modulation frequency.en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.identifier.citationPublished online 8 December 2020en_GB
dc.identifier.doi10.1039/d0cp05056c
dc.identifier.grantnumberNE/S014314/1en_GB
dc.identifier.grantnumberNE/L013797/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/124147
dc.language.isoenen_GB
dc.publisherRoyal Society of Chemistryen_GB
dc.rightsOpen Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.en_GB
dc.titlePhotoacoustic Studies of Energy Transfer from Ozone Photoproducts to Bath Gases following Chappuis Band Photoexcitationen_GB
dc.typeArticleen_GB
dc.date.available2020-12-17T08:24:26Z
dc.identifier.issn1463-9076
dc.descriptionThis is the final version. Available from the Royal Society of Chemistry via the DOI in this record.en_GB
dc.identifier.journalPhysical Chemistry Chemical Physicsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_GB
dcterms.dateAccepted2020-12-02
exeter.funder::Natural Environment Research Council (NERC)en_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-12-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-12-17T08:15:57Z
refterms.versionFCDVoR
refterms.dateFOA2020-12-17T08:24:31Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Except where otherwise noted, this item's licence is described as Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.