Show simple item record

dc.contributor.authorChiarellotto, B
dc.contributor.authorProietto, VD
dc.contributor.authorShiho, A
dc.date.accessioned2021-01-29T13:08:29Z
dc.date.issued2023-08-07
dc.description.abstractIn this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta-Iovita-Kim's article: obtaining in this way a complete algebraic criterion for good reduction for curves.en_GB
dc.description.sponsorshipMIUR-PRINen_GB
dc.description.sponsorshipJapan Society for the Promotion of Science (JSPS)en_GB
dc.identifier.citationVol. 288, Number 1430en_GB
dc.identifier.doi10.1090/memo/1430
dc.identifier.grantnumber25400008en_GB
dc.identifier.grantnumber17K05162en_GB
dc.identifier.grantnumber15H02048en_GB
dc.identifier.grantnumber18H03667en_GB
dc.identifier.grantnumber18H05233en_GB
dc.identifier.urihttp://hdl.handle.net/10871/124555
dc.language.isoenen_GB
dc.publisherAmerican Mathematical Societyen_GB
dc.rights© 2023, American Mathematical Societyen_GB
dc.titleComparison of relatively unipotent log de Rham fundamental groupsen_GB
dc.typeArticleen_GB
dc.date.available2021-01-29T13:08:29Z
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Mathematical Society via the DOI in this recorden_GB
dc.identifier.eissn1947-6221
dc.identifier.journalMemoirs of the American Mathematical Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-01-02
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-01-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-01-29T13:02:31Z
refterms.versionFCDAM
refterms.dateFOA2023-08-14T14:47:25Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record