Show simple item record

dc.contributor.authorPakmor, R
dc.contributor.authorVan De Voort, F
dc.contributor.authorBieri, R
dc.contributor.authorGómez, FA
dc.contributor.authorGrand, RJJ
dc.contributor.authorGuillet, T
dc.contributor.authorMarinacci, F
dc.contributor.authorPfrommer, C
dc.contributor.authorSimpson, CM
dc.contributor.authorSpringel, V
dc.date.accessioned2021-03-29T08:13:54Z
dc.date.issued2020-08-21
dc.description.abstractThe circumgalactic medium (CGM) is one of the frontiers of galaxy formation and intimately connected to the galaxy via accretion of gas on to the galaxy and gaseous outflows from the galaxy. Here, we analyse the magnetic field in the CGM of the Milky Way-like galaxies simulated as part of the auriga project that constitutes a set of high-resolution cosmological magnetohydrodynamical zoom simulations. We show that before z = 1 the CGM becomes magnetized via galactic outflows that transport magnetized gas from the disc into the halo. At this time, the magnetization of the CGM closely follows its metal enrichment. We then show that at low redshift an in situ turbulent dynamo that operates on a time-scale of Gigayears further amplifies the magnetic field in the CGM and saturates before z = 0. The magnetic field strength reaches a typical value of $0.1\, \mu \mathrm{ G}$ at the virial radius at z = 0 and becomes mostly uniform within the virial radius. Its Faraday rotation signal is in excellent agreement with recent observations. For most of its evolution, the magnetic field in the CGM is an unordered small-scale field. Only strong coherent outflows at low redshift are able to order the magnetic field in parts of the CGM that are directly displaced by these outflows.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaften_GB
dc.description.sponsorshipCONICYTen_GB
dc.description.sponsorshipMax Planck Societyen_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipItalian MIURen_GB
dc.description.sponsorshipNational Science Foundation (NSF)en_GB
dc.identifier.citationVol. 498 (3), pp. 3125 - 3137en_GB
dc.identifier.doi10.1093/mnras/staa2530
dc.identifier.grantnumberSP 709/5-1en_GB
dc.identifier.grantnumber1181264en_GB
dc.identifier.grantnumber787361-COBOMen_GB
dc.identifier.grantnumberCRAGSMAN-646955en_GB
dc.identifier.grantnumberNSF PHY-1748958en_GB
dc.identifier.urihttp://hdl.handle.net/10871/125252
dc.language.isoenen_GB
dc.publisherRoyal Astronomical Society / Oxford University Pressen_GB
dc.rights© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)en_GB
dc.subjectMHDen_GB
dc.subjectmethods: numericalen_GB
dc.subjectGalaxy: formationen_GB
dc.subjectalaxies: haloesen_GB
dc.subjectgalaxies: magnetic fieldsen_GB
dc.titleMagnetizing the circumgalactic medium of disc galaxiesen_GB
dc.typeArticleen_GB
dc.date.available2021-03-29T08:13:54Z
dc.identifier.issn0035-8711
dc.descriptionThis is the final version. Available from Oxford University Press via the DOI in this recorden_GB
dc.descriptionData availability: The simulations underlying this article will be shared on reasonable request to the corresponding author.en_GB
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-08-17
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-08-21
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-03-29T08:10:41Z
refterms.versionFCDVoR
refterms.dateFOA2021-03-29T08:13:56Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record