Show simple item record

dc.contributor.authorJing, Q
dc.contributor.authorPace, A
dc.contributor.authorIves, L
dc.contributor.authorHusmann, A
dc.contributor.authorCatic, N
dc.contributor.authorKhanduja, V
dc.contributor.authorCama, J
dc.contributor.authorKar-Narayan, S
dc.date.accessioned2021-03-31T07:12:05Z
dc.date.issued2021-03-30
dc.description.abstractForce sensors that are thin, low-cost, flexible, and compatible with commercial microelectronic chips are of great interest for use in biomedical sensing, precision surgery, and robotics. By leveraging a combination of microfluidics and capacitive sensing, we develop a thin, flexible force sensor that is conformable and robust. The sensor consists of a partially filled microfluidic channel made from a deformable material, with the channel overlaying a series of interdigitated electrodes coated with a thin, insulating polymer layer. When a force is applied to the microfluidic channel reservoir, the fluid is displaced along the channel over the electrodes, thus inducing a capacitance change proportional to the applied force. The microfluidic molds themselves are made of low-cost sacrificial materials deposited via aerosol-jet printing, which is also used to print the electrode layer. We envisage a large range of industrial and biomedical applications for this force sensor.en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.identifier.citationVol. 2, article 100386en_GB
dc.identifier.doi10.1016/j.xcrp.2021.100386
dc.identifier.grantnumberERC-2014-STG-639526en_GB
dc.identifier.grantnumberEP/P007767/1en_GB
dc.identifier.grantnumber204909/Z/16/Zen_GB
dc.identifier.grantnumberEP/R513180/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/125266
dc.language.isoenen_GB
dc.publisherCell Pressen_GB
dc.relation.urlhttps://doi.org/10.17863/CAM.63758en_GB
dc.rights© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectconformable force sensoren_GB
dc.subjectaerosol-jet printingen_GB
dc.subjectmicrofluidicsen_GB
dc.subjectcapacitanceen_GB
dc.subjectinterdigitated electrodesen_GB
dc.subjectflexible electronicsen_GB
dc.subjectsoft roboticsen_GB
dc.titleAerosol-jet-printed, conformable microfluidic force sensorsen_GB
dc.typeArticleen_GB
dc.date.available2021-03-31T07:12:05Z
dc.descriptionThis is the final version. Available on open access from Cell Press via the DOI in this recorden_GB
dc.descriptionData and code availability: The authors declare that data supporting the findings of this study are available within the article, the Supplemental information, and the DSpace@Cambridge data repository (https://doi.org/10.17863/CAM.63758).en_GB
dc.identifier.journalCell Reports Physical Scienceen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2021-03-02
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-03-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-03-30T16:28:13Z
refterms.versionFCDVoR
refterms.dateFOA2021-03-31T07:12:09Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).