Show simple item record

dc.contributor.authorHenry, M
dc.contributor.authorMerlis, TM
dc.contributor.authorLutsko, NJ
dc.contributor.authorRose, BEJ
dc.date.accessioned2021-06-16T12:29:25Z
dc.date.issued2021-02-24
dc.description.abstractThe precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.en_GB
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_GB
dc.description.sponsorshipNational Science Foundation (USA)en_GB
dc.identifier.citationVol. 34, No. 6, pp. 2355 - 2365en_GB
dc.identifier.doi10.1175/JCLI-D-20-0178.1
dc.identifier.grantnumberAGS-1455071en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126083
dc.language.isoenen_GB
dc.publisherAmerican Meteorological Societyen_GB
dc.relation.urlhttps://github.com/matthewjhenry/HMLR19_SCM
dc.relation.urlhttps://climlab.readthedocs.io
dc.relation.urlhttps://ceres.larc.nasa.gov/
dc.rights.embargoreasonUnder embargo until 24 August 2021 in compliance with publisher policyen_GB
dc.rights© 2021 American Meteorological Society.en_GB
dc.subjectArcticen_GB
dc.subjectClimate changeen_GB
dc.subjectFeedbacken_GB
dc.titleDecomposing the drivers of polar amplification with a single-column modelen_GB
dc.typeArticleen_GB
dc.date.available2021-06-16T12:29:25Z
dc.identifier.issn0894-8755
dc.descriptionThis is the final version. Available from the American Meteorological Society via the DOI in this record. en_GB
dc.descriptionThe code and data needed to reproduce all figures, tables, and supplemental figures are available at https:// github.com/matthewjhenry/HMLR19_SCM. Documentation for the Python ClimLab package can be found at https://climlab. readthedocs.io/. The top-of-atmosphere albedo data from the Cloud and the Earth’s Radiant Energy System (CERES) can be found at https://ceres.larc.nasa.gov/. The CMIP6 data are available on the Earth System Grid Federation database. Ten_GB
dc.identifier.eissn1520-0442
dc.identifier.journalJournal of Climateen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-12-03
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-02-24
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-06-16T12:14:52Z
refterms.versionFCDVoR
refterms.dateFOA2021-08-23T23:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record