Show simple item record

dc.contributor.authorSpence, S
dc.contributor.authorKoong, ZX
dc.contributor.authorHorsley, SAR
dc.contributor.authorRojas, X
dc.date.accessioned2021-06-21T09:08:23Z
dc.date.issued2021-03-31
dc.description.abstractIn quantum optomechanics, finding materials and strategies to limit losses has been crucial to the progress of the field. Recently, superfluid 4He was proposed as a promising mechanical element for quantum optomechanics. This quantum fluid shows highly desirable properties (e.g., extremely low acoustic loss) for a quantum optomechanical system. In current implementations, superfluid optomechanical systems suffer from external sources of loss, which spoils the quality factor of resonators. In this work, we propose an alternate implementation, exploiting nanofluidic confinement. Our approach, based on acoustic resonators formed within phononic nanostructures, aims at limiting radiation losses to preserve the intrinsic properties of superfluid 4He. In this work, we estimate the optomechanical system parameters. Using recent theory, we derive the expected quality factors for acoustic resonators in different thermodynamic conditions. We calculate the sources of loss induced by the phononic nanostructures with numerical simulations. Our results indicate the feasibility of the proposed approach in a broad range of parameters, which opens prospects for more complex geometries.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipThe Royal Societyen_GB
dc.description.sponsorshipThe Royal Societyen_GB
dc.description.sponsorshipThe Royal Societyen_GB
dc.description.sponsorshipThe Royal Societyen_GB
dc.description.sponsorshipThe Royal Societyen_GB
dc.description.sponsorshipRoyal Holloway Strategy Funden_GB
dc.identifier.citationVol. 15 (3), article 034090en_GB
dc.identifier.doi10.1103/PhysRevApplied.15.034090
dc.identifier.grantnumberEP/R04533X/1en_GB
dc.identifier.grantnumberUF150140en_GB
dc.identifier.grantnumberRGF\EA\180099en_GB
dc.identifier.grantnumberRGF\R1\180059en_GB
dc.identifier.grantnumberRGF\EA\201047en_GB
dc.identifier.grantnumberRPG\2016\186en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126115
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.rights© 2021 American Physical Societyen_GB
dc.subjectAcoustic phononsen_GB
dc.subjectOptoelectronicsen_GB
dc.subjectOptomechanicsen_GB
dc.subjectHelium-4 superfluidsen_GB
dc.subjectNanofluidic devicesen_GB
dc.subjectNanomechanical devicesen_GB
dc.subjectSuperconducting devicesen_GB
dc.subjectCavity resonatorsen_GB
dc.titleSuperfluid Optomechanics With Phononic Nanostructuresen_GB
dc.typeArticleen_GB
dc.date.available2021-06-21T09:08:23Z
dc.descriptionThis is the author accepted manuscript.en_GB
dc.identifier.journalPhysical Review Applieden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-03-02
exeter.funder::Royal Society (Charity)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-03-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-06-21T08:56:03Z
refterms.versionFCDAM
refterms.dateFOA2021-06-21T09:08:31Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record