Show simple item record

dc.contributor.authorFinley, AJ
dc.contributor.authorMatt, SP
dc.contributor.authorRéville, V
dc.contributor.authorPinto, RF
dc.contributor.authorOwens, M
dc.contributor.authorKasper, JC
dc.contributor.authorKorreck, KE
dc.contributor.authorCase, AW
dc.contributor.authorStevens, ML
dc.contributor.authorWhittlesey, P
dc.contributor.authorLarson, D
dc.contributor.authorLivi, R
dc.date.accessioned2021-06-22T06:28:32Z
dc.date.issued2020-10-07
dc.description.abstractThe long-term evolution of the Sun's rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate ∝ age−1/2, requires the current solar angular momentum (AM) loss rate to be around 6 × 1030 erg. Magnetohydrodynamic models, and previous observations of the solar wind (from the Helios and Wind spacecraft), generally predict a values closer to 1 × 1030 erg or 3 × 1030 erg, respectively. Recently, the Parker Solar Probe (PSP) observed tangential solar wind speeds as high as ~50 km s−1 in a localized region of the inner heliosphere. If such rotational flows were prevalent throughout the corona, it would imply that the solar wind AM-loss rate is an order of magnitude larger than all of those previous estimations. In this Letter, we evaluate the AM flux in the solar wind, using data from the first two orbits of PSP. The solar wind is observed to contain both large positive (as seen during perihelion), and negative AM fluxes. We analyze two solar wind streams that were repeatedly traversed by PSP; the first is a slow wind stream whose average AM flux fluctuates between positive and negative values, and the second is an intermediate speed stream that contains a positive AM flux (more consistent with a constant flow of AM). When the data from PSP are evaluated holistically, the average equatorial AM flux implies a global AM-loss rate of around (2.6–4.2) × 1030 erg (which is more consistent with observations from previous spacecraft).en_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipFrench space agency (Centre National des Etudes 624 Spatialesen_GB
dc.identifier.citationVol. 902, (1), article L4en_GB
dc.identifier.doi10.3847/2041-8213/abb9a5
dc.identifier.grantnumberST/M000885/1en_GB
dc.identifier.grantnumberST/R000921/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126131
dc.language.isoenen_GB
dc.publisherAmerican Astronomical Society / IOP Publishingen_GB
dc.rights.embargoreasonPublisher policy.en_GB
dc.rights© 2020. The American Astronomical Society. All rights reserved.en_GB
dc.subjectSolar Winden_GB
dc.subjectRotational Evolutionen_GB
dc.titleThe Solar Wind Angular Momentum Flux as Observed by Parker Solar Probeen_GB
dc.typeArticleen_GB
dc.date.available2021-06-22T06:28:32Z
dc.identifier.issn0004-637X
dc.descriptionThis is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.en_GB
dc.identifier.journalThe Astrophysical Journalen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-09-17
rioxxterms.funderEuropean Research Councilen_GB
rioxxterms.funderEuropean Research Councilen_GB
rioxxterms.identifier.projectHorizon 2020 grant agreement No 682393 AWESoMeStarsen_GB
rioxxterms.identifier.projectSLOW SOURCE - DLV-819189en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-09-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-06-22T06:25:03Z
refterms.versionFCDAM
refterms.dateFOA2021-06-22T06:28:41Z
refterms.panelBen_GB
rioxxterms.funder.project5355b69f-103a-4692-bcdc-fa18e2133952en_GB
rioxxterms.funder.project7075c9d1-e318-4cfc-9105-e4fbb4c3691ben_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record