Show simple item record

dc.contributor.authorChristie, DA
dc.contributor.authorMayne, NJ
dc.contributor.authorLines, S
dc.contributor.authorParmentier, V
dc.contributor.authorManners, J
dc.contributor.authorBoutle, I
dc.contributor.authorDrummond, B
dc.contributor.authorMikal-Evans, T
dc.contributor.authorSing, DK
dc.contributor.authorKohari, K
dc.date.accessioned2021-07-14T11:09:48Z
dc.date.issued2021-07-16
dc.description.abstractWe present results of 3D hydrodynamical simulations of HD209458b including a coupled, radiatively-active cloud model (EddySed). We investigate the role of the mixing by replacing the default convective treatment used in previous works with a more physically relevant mixing treatment (𝐾𝑧𝑧 ) based on global circulation. We find that uncertainty in the efficiency of sedimentation through the sedimentation factor 𝑓sed plays a larger role in shaping cloud thickness and its radiative feedback on the local gas temperatures – e.g. hot spot shift and day-to-night side temperature gradient – than the switch in mixing treatment. We demonstrate using our new mixing treatments that simulations with cloud scales which are a fraction of the pressure scale height improve agreement with the observed transmission spectra, the emission spectra, and the Spitzer 4.5 𝜇m phase curve, although our models are still unable to reproduce the optical and UV transmission spectra. We also find that the inclusion of cloud increases the transit asymmetry in the optical between the east and west limbs, although the difference remains small (. 1%).en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipMedical Research Council (MRC)en_GB
dc.identifier.citationPublished online 16 July 2021en_GB
dc.identifier.doi10.1093/mnras/stab2027
dc.identifier.grantnumberST/R000395/1en_GB
dc.identifier.grantnumberMR/T040866/1en_GB
dc.identifier.grantnumberRPG-2020-82en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126404
dc.language.isoenen_GB
dc.publisherOxford University Press / Royal Astronomical Societyen_GB
dc.relation.urlhttps://doi.org/10.7910/DVN/NLT6MSen_GB
dc.rights© 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
dc.subjectmethods: numericalen_GB
dc.subjectscatteringen_GB
dc.subjectPlanets and satellites: atmospheresen_GB
dc.subjectPlanets and satellites: gaseous planetsen_GB
dc.titleThe impact of mixing treatments on cloud modelling in 3D simulations of hot Jupitersen_GB
dc.typeArticleen_GB
dc.date.available2021-07-14T11:09:48Z
dc.identifier.issn0035-8711
dc.descriptionThis is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recorden_GB
dc.descriptionData availability: The research data supporting this publication are openly available at https://doi.org/10.7910/DVN/NLT6MSen_GB
dc.identifier.eissn1365-2966
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-07-02
exeter.funder::Leverhulme Trusten_GB
exeter.funder::Science and Technology Facilities Councilen_GB
exeter.funder::Medical Research Council (MRC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-07-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-07-14T10:05:48Z
refterms.versionFCDAM
refterms.dateFOA2021-07-29T13:00:36Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record