Mean values of derivatives of L-functions in function fields: IV
dc.contributor.author | Bueno De Andrade, JC | |
dc.contributor.author | Jung, H | |
dc.date.accessioned | 2021-08-24T13:30:19Z | |
dc.date.issued | 2021-09-30 | |
dc.description.abstract | In this series, we investigate the calculation of mean values of derivatives of Dirichlet L-functions in function fields using the analogue of the approximate functional equation and the Riemann Hypothesis for curves over finite fields. The present paper generalizes the results obtained in the first paper. For µ ≥ 1 an integer, we compute the mean value of the µ-th derivative of quadratic Dirichlet L-functions over the rational function field. We obtain the full polynomial in the asymptotic formulae for these mean values where we can see the arithmetic dependence of the lower order terms that appears in the asymptotic expansion. | en_GB |
dc.description.sponsorship | Leverhulme Trust | en_GB |
dc.description.sponsorship | National Research Foundation of Korea (NRF) | en_GB |
dc.identifier.citation | Vol. 58 (6), pp. 1529-1547 | en_GB |
dc.identifier.doi | 10.4134/JKMS.j210243 | |
dc.identifier.grantnumber | RPG-2017-320 | en_GB |
dc.identifier.grantnumber | 2020R1F1A1A01066105 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/126856 | |
dc.language.iso | en | en_GB |
dc.publisher | Korean Mathematical Society | en_GB |
dc.rights | © 2021 Korean Mathematical Society. Open access under a CC BY NC 4 licence: https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | function fields | en_GB |
dc.subject | derivatives of L–functions | en_GB |
dc.subject | moments of L–functions | en_GB |
dc.subject | quadratic Dirichlet L–functions | en_GB |
dc.subject | random matrix theory | en_GB |
dc.title | Mean values of derivatives of L-functions in function fields: IV | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2021-08-24T13:30:19Z | |
dc.identifier.issn | 0304-9914 | |
dc.description | This is the final version. Available on open access from the Korean Mathematical Society via the DOI in this record | en_GB |
dc.identifier.journal | Journal of the Korean Mathematical Society | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | en_GB |
dcterms.dateAccepted | 2021-08-19 | |
exeter.funder | ::Leverhulme Trust | en_GB |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2021-08-19 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2021-08-24T12:15:47Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2021-10-29T11:21:49Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2021 Korean Mathematical Society. Open access under a CC BY NC 4 licence: https://creativecommons.org/licenses/by-nc/4.0/