According to design standards, offshore wind turbines need to withstand environmental loads with a return period of 50 years. This work compares the extreme response along the 50-year environmental contour with the true 50-year wind turbine response. It was found that the environmental contour method that is currently described in the ...
According to design standards, offshore wind turbines need to withstand environmental loads with a return period of 50 years. This work compares the extreme response along the 50-year environmental contour with the true 50-year wind turbine response. It was found that the environmental contour method that is currently described in the IEC design standard for offshore wind turbines can strongly under-predict the 50-year return value of response variables whose annual maxima typically occur during power production. The bias in the contour-based estimate of the 50-year response can be attributed to three sources: (1) the method used to construct the contour; (2) neglecting serial correlation in environmental conditions; and (3) neglecting the short-term variability in the response. In our analysis the 50-year maximum mudline overturning moment was underestimated by 4–8% by the contour-based approach that is currently recommended, whereas the bending moment at 10 m water depth was underestimated by 25–28%. This underestimation was mainly due to ignoring the short-term variability in the response. The bias associated with contour construction, an effect much discussed in recent publications, was of much smaller magnitude.