Show simple item record

dc.contributor.authorDa̧browski, M
dc.contributor.authorScott, JN
dc.contributor.authorHendren, WR
dc.contributor.authorForbes, CM
dc.contributor.authorFrisk, A
dc.contributor.authorBurn, DM
dc.contributor.authorNewman, DG
dc.contributor.authorSait, CRJ
dc.contributor.authorKeatley, PS
dc.contributor.authorN’Diaye, AT
dc.contributor.authorHesjedal, T
dc.contributor.authorvan der Laan, G
dc.contributor.authorBowman, RM
dc.contributor.authorHicken, RJ
dc.date.accessioned2021-10-27T09:41:39Z
dc.date.issued2021-10-26
dc.description.abstractAll-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research was almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments, and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the sub-nanometer Ir layer. The magnetic properties of this model system may be tuned continuously via sub-nanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated, and paving the way to a new class of data storage devices.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipSeagate Technology (Ireland)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipRoyal Academy of Engineeringen_GB
dc.identifier.citationPublished online 26 October 2021en_GB
dc.identifier.doi10.1021/acs.nanolett.1c03081
dc.identifier.grantnumberEP/P021190/1en_GB
dc.identifier.grantnumberEP/P020151/1en_GB
dc.identifier.grantnumberEP/P02047X/1en_GB
dc.identifier.grantnumberEP/L015323/01en_GB
dc.identifier.grantnumberSOW #00077300.0.en_GB
dc.identifier.grantnumberEP/L015331/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/127590
dc.language.isoenen_GB
dc.publisherAmerican Chemical Societyen_GB
dc.rights.embargoreasonUnder embargo until 26 October 2022 in compliance with publisher policyen_GB
dc.rightsCopyright © 2021, American Chemical Societyen_GB
dc.subjectall-optical magnetization switchingen_GB
dc.subjectsynthetic ferrimagneten_GB
dc.subjectspintronicsen_GB
dc.subjectmagnetic recordingen_GB
dc.subjectultrafast spin currenten_GB
dc.subjectnegative remanenceen_GB
dc.titleTransition metal synthetic ferrimagnets: tuneable media for all-optical switching driven by nanoscale spin currenten_GB
dc.typeArticleen_GB
dc.date.available2021-10-27T09:41:39Z
dc.identifier.issn1530-6984
exeter.article-numberacs.nanolett.1c03081en_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recorden_GB
dc.descriptionThe Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03081.en_GB
dc.identifier.eissn1530-6992
dc.identifier.journalNano Lettersen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-08-10
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-10-26
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-10-27T09:29:20Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record