Show simple item record

dc.contributor.authorKyriienko, O
dc.contributor.authorElfving, VE
dc.date.accessioned2021-11-16T09:20:15Z
dc.date.issued2021-11-15
dc.date.updated2021-11-15T18:26:48Z
dc.description.abstractVariational quantum algorithms that are used for quantum machine learning rely on the ability to automatically differentiate parametrized quantum circuits with respect to underlying parameters. Here we propose the rules for differentiating quantum circuits (unitaries) with arbitrary generators. Unlike the standard parameter-shift rule valid for unitaries generated by operators with spectra limited to at most two unique eigenvalues (represented by involutory and idempotent operators), our approach also works for generators with a generic nondegenerate spectrum. Based on a spectral decomposition, we derive a simple recipe that allows explicit derivative evaluation. The derivative corresponds to the weighted sum of measured expectations for circuits with shifted parameters. The number of function evaluations is equal to the number of unique positive nonzero spectral gaps (eigenvalue differences) for the generator. We apply the approach to relevant examples of two-qubit gates, among others showing that the so-called fermionic simulation (fSim) gate can be differentiated using four measurements. Additionally, we present generalized differentiation rules for the case of Pauli-string generators, based on distinct shifts (here referred to as the triangulation approach), and analyze the variance for derivative measurements in different scenarios. Our work offers a toolbox for the efficient hardware-oriented differentiation needed for circuit optimization and operator-based derivative representation.en_GB
dc.identifier.citationVol. 104(5), article 052417en_GB
dc.identifier.doihttps://doi.org/10.1103/physreva.104.052417
dc.identifier.urihttp://hdl.handle.net/10871/127818
dc.identifierORCID: 0000-0002-6259-6570 (Kyriienko, Oleksandr)
dc.language.isoenen_GB
dc.publisherAmerican Physical Society (APS)en_GB
dc.rights© 2021 American Physical Societyen_GB
dc.titleGeneralized quantum circuit differentiation rulesen_GB
dc.typeArticleen_GB
dc.date.available2021-11-16T09:20:15Z
dc.identifier.issn2469-9926
exeter.article-number052417
dc.descriptionThis is the final version. Available from the American Physical Society via the DOI in this recorden_GB
dc.identifier.eissn2469-9934
dc.identifier.journalPhysical Review Aen_GB
dc.relation.ispartofPhysical Review A, 104(5)
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-10-22
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-11-15
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-11-16T09:17:34Z
refterms.versionFCDVoR
refterms.dateFOA2021-11-16T09:20:22Z
refterms.panelBen_GB
refterms.dateFirstOnline2021-11-15


Files in this item

This item appears in the following Collection(s)

Show simple item record