Show simple item record

dc.contributor.authorChen, H
dc.contributor.authorDas, S
dc.contributor.authorMorgan, JM
dc.contributor.authorMaharatna, K
dc.date.accessioned2022-01-04T10:12:41Z
dc.date.issued2021-12-29
dc.date.updated2022-01-03T12:44:58Z
dc.description.abstractBackground and objective Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. Methods A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. Results 32 healthy and 32 arrhythmic subjects from two open databases; PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. Conclusions The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.en_GB
dc.format.extent105180-
dc.identifier.citationArticle 105180en_GB
dc.identifier.doihttps://doi.org/10.1016/j.compbiomed.2021.105180
dc.identifier.urihttp://hdl.handle.net/10871/128262
dc.identifierORCID: 0000-0002-8394-5303 (Das, Saptarshi)
dc.identifierScopusID: 57193720393 (Das, Saptarshi)
dc.identifierResearcherID: D-5518-2012 (Das, Saptarshi)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 29 December 2022 in compliance with publisher policyen_GB
dc.rights© 2021 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectHeart Diseaseen_GB
dc.subjectCardiovascularen_GB
dc.subjectClinical Researchen_GB
dc.subjectCardiovascularen_GB
dc.titlePrediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clusteringen_GB
dc.typeArticleen_GB
dc.date.available2022-01-04T10:12:41Z
dc.identifier.issn0010-4825
exeter.article-number105180
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalComputers in Biology and Medicineen_GB
dc.relation.ispartofComputers in Biology and Medicine
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2021-12-24
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-12-29
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-01-04T10:10:26Z
refterms.versionFCDAM
refterms.dateFOA2022-12-29T00:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2021 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/