Show simple item record

dc.contributor.authorBaker, E
dc.contributor.authorBarbillon, P
dc.contributor.authorFadikar, A
dc.contributor.authorGramacy, RB
dc.contributor.authorHerbei, R
dc.contributor.authorHigdon, D
dc.contributor.authorHuang, J
dc.contributor.authorJohnson, LR
dc.contributor.authorMa, P
dc.contributor.authorMondal, A
dc.contributor.authorPires, B
dc.contributor.authorSacks, J
dc.contributor.authorSokolov, V
dc.date.accessioned2022-01-21T16:15:29Z
dc.date.issued2022-01-19
dc.date.updated2022-01-21T15:38:42Z
dc.description.abstractIn modern science, computer models are often used to understand complex phenomena, and a thriving statistical community has grown around analyzing them. This review aims to bring a spotlight to the growing prevalence of stochastic computer models -- providing a catalogue of statistical methods for practitioners, an introductory view for statisticians (whether familiar with deterministic computer models or not), and an emphasis on open questions of relevance to practitioners and statisticians. Gaussian process surrogate models take center stage in this review, and these, along with several extensions needed for stochastic settings, are explained. The basic issues of designing a stochastic computer experiment and calibrating a stochastic computer model are prominent in the discussion. Instructive examples, with data and code, are used to describe the implementation of, and results from, various methods.en_GB
dc.description.sponsorshipEuropean Union FP7en_GB
dc.description.sponsorshipDOE LABen_GB
dc.description.sponsorshipNational Science Foundationen_GB
dc.identifier.citationVol. 37, No. 1, pp. 64-89en_GB
dc.identifier.doihttps://doi.org/10.1214/21-STS822
dc.identifier.grantnumber609398en_GB
dc.identifier.grantnumber17-1697en_GB
dc.identifier.grantnumberDMS-1821258en_GB
dc.identifier.grantnumberCCF1918770en_GB
dc.identifier.grantnumber1750113en_GB
dc.identifier.grantnumberDMS-1638521en_GB
dc.identifier.urihttp://hdl.handle.net/10871/128510
dc.identifierORCID: 0000-0003-0945-4749 (Baker, Evan)
dc.language.isoenen_GB
dc.publisherInstitute of Mathematical Statisticsen_GB
dc.rights© 2022 Institute of Mathematical Statisticsen_GB
dc.subjectComputer Modelen_GB
dc.subjectGaussian Processen_GB
dc.subjectUncertainty Quantificationen_GB
dc.subjectEmulatoren_GB
dc.subjectComputer Experimenten_GB
dc.subjectAgent Based Modelen_GB
dc.subjectSurrogatesen_GB
dc.subjectCalibrationen_GB
dc.titleAnalyzing stochastic computer models: A review with opportunitiesen_GB
dc.typeArticleen_GB
dc.date.available2022-01-21T16:15:29Z
dc.identifier.issn0883-4237
dc.descriptionThis is the author accepted manuscript. The final version is available from the Institute of Mathematical Statistics via the DOI in this record en_GB
dc.identifier.journalStatistical Scienceen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-02-04
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-01-21T15:50:43Z
refterms.versionFCDAM
refterms.dateFOA2022-01-21T16:15:37Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record