Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia
Ochungo, P; Khalaf, N; Merlo, S; et al.Beldados, A; M’Mbogori, FN; Tiki, W; Lane, PJ
Date: 11 January 2022
Journal
Remote Sensing
Publisher
MDPI
Publisher DOI
Abstract
The region of Southern Ethiopia (Borana) and Northern Kenya (Marsabit) is characterised by erratic rainfall, limited surface water, aridity, and frequent droughts. An important adaptive response to these conditions, of uncertain antiquity, has been the hand-excavation of a sequence of deep wells at key locations often along seasonal ...
The region of Southern Ethiopia (Borana) and Northern Kenya (Marsabit) is characterised by erratic rainfall, limited surface water, aridity, and frequent droughts. An important adaptive response to these conditions, of uncertain antiquity, has been the hand-excavation of a sequence of deep wells at key locations often along seasonal riverbeds and valley bottoms where subterranean aquifers can be tapped. Sophisticated indigenous water management systems have developed to ensure equitable access to these critical water resources, and these are part of well-defined customary institutional leadership structures that govern the community giving rise to a distinctive form of biocultural heritage. These systems, and the wells themselves, are increasingly under threat, however, from climate change, demographic growth, and socio-economic development. To contribute to an assessment of the scale, distribution and intensity of these threats, this study aimed to evaluate the land-use land-cover (LULC) and precipitation changes in this semi-arid to arid landscape and their association with, and impact on, the preservation of traditional wells. Multitemporal Landsat 5, 7 and 8 satellite imagery covering the period 1990 to 2020, analysed at a temporal resolution of 10 years, was classified using supervised classification via the Random Forest machine learning method to extract the following classes: bare land, grassland, shrub land, open forest, closed forest, croplands, settlement and waterbodies. Change detection was then applied to identify and quantify changes through time and landscape degradation indices were generated using the Shannon Diversity Index fragmentation index within a 15 km buffer of each well cluster. The results indicated that land cover change was mostly driven by increasing anthropogenic changes with resultant reduction in natural land cover classes. Furthermore, increased fragmentation has occurred within most of the selected buffer distances of the well clusters. The main drivers of change that have directly or indirectly impacted land degradation and the preservation of indigenous water management systems were identified through an analysis of land cover changes in the last 30 years, supporting insights from previous focused group discussions with communities in Kenya and Ethiopia. Our approach showed that remote sensing methods can be used for the spatially explicit mapping o
Institute of Arab and Islamic Studies
Faculty of Humanities, Arts and Social Sciences
Item views 0
Full item downloads 0
Except where otherwise noted, this item's licence is described as © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).