Show simple item record

dc.contributor.authorZhirnov, A
dc.contributor.authorMoral, M
dc.contributor.authorSedashov, E
dc.date.accessioned2022-03-21T09:51:04Z
dc.date.issued2022-03-18
dc.date.updated2022-03-20T08:44:29Z
dc.description.abstractIn recent decades, political science literature has experienced significant growth in the popularity of nonlinear models with multiplicative interaction terms. When one or more constitutive variables are not binary, most studies report the marginal effect of the variable of interest at its sample mean while allowing the other constitutive variable/s to vary along its range and holding all other covariates constant at their means, modes, or medians. In this article, we argue that this conventional approach is not always the most suitable since the marginal effect of a variable at its sample mean might not be sufficiently representative of its prevalent effect at a specific value of the conditioning variable and might produce excessively model-dependent predictions. We propose two procedures to help researchers gain a better understanding of how the typical effect of the variable of interest varies as a function of the conditioning variable: (1) computing and plotting the marginal effects at all in-sample combinations of the values of the constitutive variables and (2) computing and plotting what we call the “Distribution-Weighted Average Marginal Effect” over the values of the conditioning variable.en_GB
dc.format.extent1-22
dc.identifier.citationPublished online 18 March 2022en_GB
dc.identifier.doihttps://doi.org/10.1017/pan.2022.9
dc.identifier.urihttp://hdl.handle.net/10871/129098
dc.identifierORCID: 0000-0002-2978-8239 (Zhirnov, Andrei)
dc.language.isoenen_GB
dc.publisherCambridge University Press (CUP) / Society for Political Methodologyen_GB
dc.relation.urlhttps://doi.org/10.7910/DVN/ZJCYGPen_GB
dc.rights© The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for Political Methodology. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjectinteraction termsen_GB
dc.subjectmarginal effecten_GB
dc.subjectnonlinear modelsen_GB
dc.titleTaking Distributions Seriously: On the Interpretation of the Estimates of Interactive Nonlinear Modelsen_GB
dc.typeArticleen_GB
dc.date.available2022-03-21T09:51:04Z
dc.identifier.issn1047-1987
dc.descriptionThis is the final version. Available on open access from Cambridge University Press via the DOI in this recorden_GB
dc.descriptionData Availability Statement; Replication code for this article is available at Zhirnov, Moral, and Sedashov (Reference Zhirnov, Moral and Sedashov2022) at https://doi.org/10.7910/DVN/ZJCYGP.en_GB
dc.identifier.eissn1476-4989
dc.identifier.journalPolitical Analysisen_GB
dc.relation.ispartofPolitical Analysis
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionVoRen_GB
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-03-21T09:49:33Z
refterms.versionFCDVoR
refterms.dateFOA2022-03-21T09:51:16Z
refterms.panelCen_GB
refterms.dateFirstOnline2022-03-18


Files in this item

This item appears in the following Collection(s)

Show simple item record