Show simple item record

dc.contributor.authorQuanz, SP
dc.contributor.authorOttiger, M
dc.contributor.authorFontanet, E
dc.contributor.authorKammerer, J
dc.contributor.authorMenti, F
dc.contributor.authorDannert, F
dc.contributor.authorGheorghe, A
dc.contributor.authorAbsil, O
dc.contributor.authorAirapetian, VS
dc.contributor.authorAlei, E
dc.contributor.authorAllart, R
dc.contributor.authorAngerhausen, D
dc.contributor.authorBlumenthal, S
dc.contributor.authorBuchhave, LA
dc.contributor.authorCabrera, J
dc.contributor.authorCarrión-González, Ó
dc.contributor.authorChauvin, G
dc.contributor.authorDanchi, WC
dc.contributor.authorDandumont, C
dc.contributor.authorDefrère, D
dc.contributor.authorDorn, C
dc.contributor.authorEhrenreich, D
dc.contributor.authorErtel, S
dc.contributor.authorFridlund, M
dc.contributor.authorMuñoz, AG
dc.contributor.authorGascón, C
dc.contributor.authorGirard, JH
dc.contributor.authorGlauser, A
dc.contributor.authorGrenfell, JL
dc.contributor.authorGuidi, G
dc.contributor.authorHagelberg, J
dc.contributor.authorHelled, R
dc.contributor.authorIreland, MJ
dc.contributor.authorKopparapu, RK
dc.contributor.authorKorth, J
dc.contributor.authorKozakis, T
dc.contributor.authorKraus, S
dc.contributor.authorLéger, A
dc.contributor.authorLeedjärv, L
dc.contributor.authorLichtenberg, T
dc.contributor.authorLillo-Box, J
dc.contributor.authorLinz, H
dc.contributor.authorLiseau, R
dc.contributor.authorLoicq, J
dc.contributor.authorMahendra, V
dc.contributor.authorMalbet, F
dc.contributor.authorMathew, J
dc.contributor.authorMennesson, B
dc.contributor.authorMeyer, MR
dc.contributor.authorMishra, L
dc.contributor.authorMolaverdikhani, K
dc.contributor.authorNoack, L
dc.contributor.authorOza, AV
dc.contributor.authorPallé, E
dc.contributor.authorParviainen, H
dc.contributor.authorQuirrenbach, A
dc.contributor.authorRauer, H
dc.contributor.authorRibas, I
dc.contributor.authorRice, M
dc.contributor.authorRomagnolo, A
dc.contributor.authorRugheimer, S
dc.contributor.authorSchwieterman, EW
dc.contributor.authorSerabyn, E
dc.contributor.authorSharma, S
dc.contributor.authorStassun, KG
dc.contributor.authorSzulágyi, J
dc.contributor.authorWang, HS
dc.contributor.authorWunderlich, F
dc.contributor.authorWyatt, MC
dc.date.accessioned2022-04-04T14:32:44Z
dc.date.issued2022-08-09
dc.date.updated2022-01-04T14:29:08Z
dc.description.abstractContext. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres. Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts detecting exoplanets in reflected light. Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single-visits only, two different scenarios to distribute 2.5 years of an initial search phase among the stellar targets are discussed. Different apertures sizes and wavelength ranges are investigated. Results. An interferometer consisting of four 2 m apertures covering a wavelength range between 4 and 18.5 µm could detect up to ≈550 exoplanets with radii between 0.5 and 6 R⊕ with an integrated SNR≥7. At least ≈160 of the detected exoplanets have radii ≤1.5 R⊕. Depending on the observing scenario, ≈25–45 rocky exoplanets (objects with radii between 0.5 and 1.5 ⊕) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four times 3.5 m aperture size, the total number of detections can increase to up to ≈770, including ≈60–80rocky, eHZ planets. With four times 1 m aperture size, the maximum detection yield is ≈315 exoplanets, including ≤20 rocky, eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3–20 µm or 6–17 µmonthe detection yield is negligible. Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around Solar-type stars, appears possible by implementing a multi-visit strategy during the search phase. The high median SNR of most of the detected planets will allow for first estimates of their radii and effective temperatures and help prioritize the targets for a second mission phase to obtain high SNR thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.en_GB
dc.description.sponsorshipSwiss National Science Foundation (SNSF)en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorship“la Caixa” Foundationen_GB
dc.description.sponsorshipTrottier Family Foundationen_GB
dc.description.sponsorshipSimons Foundationen_GB
dc.identifier.citationVol. 664, article A21en_GB
dc.identifier.doi10.1051/0004-6361/202140366
dc.identifier.grantnumber639889en_GB
dc.identifier.grantnumber724427en_GB
dc.identifier.grantnumber100010434en_GB
dc.identifier.grantnumber847648en_GB
dc.identifier.grantnumber611576en_GB
dc.identifier.urihttp://hdl.handle.net/10871/129267
dc.identifierORCID: 0000-0001-6017-8773 (Kraus, S)
dc.language.isoenen_GB
dc.publisherEDP Sciences / European Southern Observatoryen_GB
dc.rights© ESO 2022. This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/  
dc.subjectTelescopesen_GB
dc.subjectTechniques: interferometricen_GB
dc.subjectInfrared: planetary systemsen_GB
dc.subjectTechniques: high angular resolutionen_GB
dc.subjectMethods: numericalen_GB
dc.subjectPlanets and satellites: detectionen_GB
dc.subjectPlanets and satellites: terrestrial planetsen_GB
dc.titleLarge Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer missionen_GB
dc.typeArticleen_GB
dc.date.available2022-04-04T14:32:44Z
dc.identifier.issn0004-6361
dc.descriptionThis is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this recorden_GB
dc.identifier.eissn1432-0746
dc.identifier.journalAstronomy and Astrophysicsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/  en_GB
dcterms.dateAccepted2022-03-31
rioxxterms.versionAMen_GB
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-04-01T08:30:41Z
refterms.versionFCDAM
refterms.dateFOA2022-08-16T14:37:36Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© ESO 2022. This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/  
Except where otherwise noted, this item's licence is described as © ESO 2022. This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/