Show simple item record

dc.contributor.authorDunne, M
dc.contributor.authorMohammadi, H
dc.contributor.authorChallenor, P
dc.contributor.authorBorgo, R
dc.contributor.authorPorphyre, T
dc.contributor.authorVernon, I
dc.contributor.authorFirat, EE
dc.contributor.authorTurkay, C
dc.contributor.authorTorsney-Weir, T
dc.contributor.authorGoldstein, M
dc.contributor.authorReeve, R
dc.contributor.authorFang, H
dc.contributor.authorSwallow, B
dc.date.accessioned2022-05-05T14:11:11Z
dc.date.issued2022-05-16
dc.date.updated2022-05-05T12:57:59Z
dc.description.abstractUncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipScottish Government Rural and Environment Science and Analytical Services Divisionen_GB
dc.description.sponsorshipFrench National Research Agencyen_GB
dc.description.sponsorshipBoehringer Ingelheim Animal Health Franceen_GB
dc.identifier.citationVol. 39, article 100574en_GB
dc.identifier.doi10.1016/j.epidem.2022.100574
dc.identifier.grantnumberEP/R014604/1en_GB
dc.identifier.grantnumberST/V006126/1en_GB
dc.identifier.grantnumberANR-16-IDEX-0005en_GB
dc.identifier.urihttp://hdl.handle.net/10871/129527
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectuncertainty quantificationen_GB
dc.subjecthistory matchingen_GB
dc.subjectstochastic epidemic modelen_GB
dc.subjectSEIRen_GB
dc.subjectCalibrationen_GB
dc.titleComplex model calibration through emulation, a worked example for a stochastic epidemic modelen_GB
dc.typeArticleen_GB
dc.date.available2022-05-05T14:11:11Z
dc.identifier.issn1878-0067
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.identifier.journalEpidemicsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-04-29
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-04-29
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-05-05T12:58:26Z
refterms.versionFCDAM
refterms.dateFOA2022-09-07T12:48:16Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).