Show simple item record

dc.contributor.authorBattaglia, F
dc.contributor.authorFenga, L
dc.date.accessioned2022-05-20T16:01:28Z
dc.date.issued2003-06-24
dc.date.updated2022-05-17T12:27:22Z
dc.description.abstractMany economic and social phenomena are measured by composite indicators computed as weighted averages of a set of elementary time series. Often data are collected by means of large sample surveys, and processing takes a long time, whereas the values of some elementary component series may be available some time before the others, and may be used for forecasting the composite index. This problem is addressed within the framework of prediction theory for stochastic processes. A method is proposed for exploiting anticipated information in order to minimise the mean square forecast error, and for selecting the most useful elementary series. An application to the Italian general industrial production index is illustrated, which demonstrates that knowledge of anticipated values of some, or even just one, component series may reduce the forecast error considerably.en_GB
dc.description.sponsorshipMinistero della Istruzione, Italyen_GB
dc.description.sponsorshipUniversit´a e Ricerca Scientifica, Italyen_GB
dc.description.sponsorshipConsiglio Nazionale delle Ricerche, Italyen_GB
dc.identifier.citationVol. 52, No. 3, pp. 279-290en_GB
dc.identifier.doihttps://doi.org/10.1111/1467-9876.00404
dc.identifier.urihttp://hdl.handle.net/10871/129694
dc.identifierORCID: 0000-0002-8185-2680 (Fenga, Livio)
dc.language.isoenen_GB
dc.publisherWiley / Royal Statistical Societyen_GB
dc.rights© 2003, Royal Statistical Societyen_GB
dc.subjectForecastingen_GB
dc.subjectIndustrial Production Indexen_GB
dc.subjectLeading indicatorsen_GB
dc.subjectMultivariate Autoregressive Modelsen_GB
dc.titleForecasting composite indicators with anticipated information: an application to the industrial production indexen_GB
dc.typeArticleen_GB
dc.date.available2022-05-20T16:01:28Z
dc.identifier.issn0035-9254
dc.descriptionThis is the author accepted manuscript. The final version is available from Wiley via the DOI in this recorden_GB
dc.identifier.eissn1467-9876
dc.identifier.journalJournal of the Royal Statistical Society Series C (Applied Statistics)en_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2003-06-24
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-05-20T15:56:55Z
refterms.versionFCDAM
refterms.dateFOA2022-05-20T16:01:40Z
refterms.panelCen_GB
refterms.dateFirstOnline2003-06-24


Files in this item

This item appears in the following Collection(s)

Show simple item record