Show simple item record

dc.contributor.authorJones, A
dc.contributor.authorHaywood, JM
dc.contributor.authorScaife, AA
dc.contributor.authorBoucher, O
dc.contributor.authorHenry, M
dc.contributor.authorKravitz, B
dc.contributor.authorLurton, T
dc.contributor.authorNabat, P
dc.contributor.authorNiemeier, U
dc.contributor.authorSéférian, R
dc.contributor.authorTilmes, S
dc.contributor.authorVisioni, D
dc.date.accessioned2022-07-26T08:18:28Z
dc.date.issued2022-03-07
dc.date.updated2022-07-25T16:44:59Z
dc.description.abstractAs part of the Geoengineering Model Intercomparison Project a numerical experiment known as G6sulfur has been designed in which temperatures under a high-forcing future scenario (SSP5-8.5) are reduced to those under a medium-forcing scenario (SSP2-4.5) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI). G6sulfur involves introducing sulfuric acid aerosol into the tropical stratosphere where it reflects incoming sunlight back to space, thus cooling the planet. Here, we compare the results from six Earth-system models that have performed the G6sulfur experiment and examine how SAI affects two important modes of natural variability, the northern wintertime North Atlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO). Although all models show that SAI is successful in reducing global mean temperature as designed, they are also consistent in showing that it forces an increasingly positive phase of the NAO as the injection rate increases over the course of the 21st century, exacerbating precipitation reductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere.en_GB
dc.description.sponsorshipDepartment for Business, Energy and Industrial Strategy, UK Governmenten_GB
dc.description.sponsorshipSilverLining, USAen_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipAgence Nationale de la Recherce, Franceen_GB
dc.description.sponsorshipNational Science Foundation (NSF)en_GB
dc.description.sponsorshipIndiana University Environmental Resilience Institute, USAen_GB
dc.description.sponsorshipPrepared for Environmental Change Grand Challenge initiative, USAen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft Research Unit VollImpact, Germanyen_GB
dc.format.extent2999-3016
dc.identifier.citationVol. 22(5), pp. 2999-3016en_GB
dc.identifier.doihttps://doi.org/10.5194/acp-22-2999-2022
dc.identifier.grantnumberNE/W003880/1en_GB
dc.identifier.grantnumberANR-11-IDEX-0004-17-EURE-0006en_GB
dc.identifier.grantnumberCBET-1931641en_GB
dc.identifier.grantnumber641816en_GB
dc.identifier.grantnumber820829en_GB
dc.identifier.grantnumber398006378en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130375
dc.identifierORCID: 0000-0002-2143-6634 (Haywood, Jim M)
dc.identifierScopusID: 7102805852 (Haywood, Jim M)
dc.identifierORCID: 0000-0002-5189-7538 (Scaife, Adam A)
dc.identifierScopusID: 6603887794 (Scaife, Adam A)
dc.identifierORCID: 0000-0003-4498-6476 (Henry, Matthew)
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union / Copernicus Publicationsen_GB
dc.relation.urlhttps://esgf-node.llnl.gov/projects/cmip6en_GB
dc.rights© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 Licenseen_GB
dc.titleThe impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experimenten_GB
dc.typeArticleen_GB
dc.date.available2022-07-26T08:18:28Z
dc.identifier.issn1680-7316
dc.descriptionThis is the final version. Available on open access from the European Geosciences Union via the DOI in this recorden_GB
dc.descriptionCode and data availability: All model data used in this work are available from the Earth System Grid Federation (WCRP, 2021; https://esgf-node.llnl.gov/projects/cmip6, last access: 14 July 2021).en_GB
dc.identifier.eissn1680-7324
dc.identifier.journalAtmospheric Chemistry and Physicsen_GB
dc.relation.ispartofAtmospheric Chemistry and Physics, 22(5)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-01-13
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-03-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-07-26T08:14:41Z
refterms.versionFCDVoR
refterms.dateFOA2022-07-26T08:18:28Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-03-07


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License
Except where otherwise noted, this item's licence is described as © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License