dc.contributor.author | Tseng, J | |
dc.date.accessioned | 2022-08-25T13:27:32Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2022-08-25T11:06:20Z | |
dc.description.abstract | Consider a shrinking neighborhood of a cusp of the unit tangent bundle of a
noncompact hyperbolic surface of finite area, and let the neighborhood shrink into the cusp
at a rate of T
−1
as T → ∞. We show that a closed horocycle whose length ` goes to infinity
or even a segment of that horocycle becomes equidistributed on the shrinking neighborhood
when normalized by the rate T
−1 provided that T /` → 0 and, for any δ > 0, the segment
remains larger than max n
T
−1/6
,(T /`)
1/2
o
(T /`)
−δ
. We also have an effective result for a
smaller range of rates of growth of T and `. Finally, a number-theoretic identity involving
the Euler totient function follows from our technique. | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.identifier.citation | Awaiting citation and DOI | en_GB |
dc.identifier.grantnumber | EP/T005130/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/130522 | |
dc.identifier | ORCID: 0000-0003-2263-8059 (Tseng, Jimmy) | |
dc.language.iso | en | en_GB |
dc.publisher | Springer | en_GB |
dc.rights.embargoreason | Under temporary indefinite embargo pending publication by Springer. 12 month embargo to be applied on publication | en_GB |
dc.title | Shrinking target equidistribution of horocycles in cusps | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2022-08-25T13:27:32Z | |
dc.identifier.issn | 1432-1823 | |
dc.description | This is the author accepted manuscript | en_GB |
dc.identifier.journal | Mathematische Zeitschrift | en_GB |
dc.relation.ispartof | Mathematische Zeitschrift | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2022-07-31 | |
dcterms.dateSubmitted | 2021-08-19 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2022-07-31 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2022-08-25T11:06:32Z | |
refterms.versionFCD | AM | |
refterms.panel | B | en_GB |