Show simple item record

dc.contributor.authorTseng, J
dc.date.accessioned2022-08-25T13:27:32Z
dc.date.issued2022
dc.date.updated2022-08-25T11:06:20Z
dc.description.abstractConsider a shrinking neighborhood of a cusp of the unit tangent bundle of a noncompact hyperbolic surface of finite area, and let the neighborhood shrink into the cusp at a rate of T −1 as T → ∞. We show that a closed horocycle whose length ` goes to infinity or even a segment of that horocycle becomes equidistributed on the shrinking neighborhood when normalized by the rate T −1 provided that T /` → 0 and, for any δ > 0, the segment remains larger than max n T −1/6 ,(T /`) 1/2 o (T /`) −δ . We also have an effective result for a smaller range of rates of growth of T and `. Finally, a number-theoretic identity involving the Euler totient function follows from our technique.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationAwaiting citation and DOIen_GB
dc.identifier.grantnumberEP/T005130/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130522
dc.identifierORCID: 0000-0003-2263-8059 (Tseng, Jimmy)
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.rights.embargoreasonUnder temporary indefinite embargo pending publication by Springer. 12 month embargo to be applied on publication en_GB
dc.titleShrinking target equidistribution of horocycles in cuspsen_GB
dc.typeArticleen_GB
dc.date.available2022-08-25T13:27:32Z
dc.identifier.issn1432-1823
dc.descriptionThis is the author accepted manuscripten_GB
dc.identifier.journalMathematische Zeitschriften_GB
dc.relation.ispartofMathematische Zeitschrift
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-07-31
dcterms.dateSubmitted2021-08-19
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-07-31
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-08-25T11:06:32Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record