Show simple item record

dc.contributor.authorPanagiotopoulos, I
dc.contributor.authorStarke, J
dc.contributor.authorSieber, J
dc.contributor.authorJust, W
dc.date.accessioned2022-08-26T10:46:39Z
dc.date.issued2023-01-25
dc.date.updated2022-08-25T23:11:59Z
dc.description.abstractThis paper presents a framework to perform bifurcation analysis in laboratory experiments or simulations. We employ control-based continuation to study the dynamics of a macroscopic variable of a microscopically defined model, exploring the potential viability of the underlying feedback control techniques in an experiment. In contrast to previous experimental studies that used iterative root-finding methods on the feedback control targets, we propose a feedback control law that is inherently non-invasive. That is, the control discovers the location of equilibria and stabilizes them simultaneously. We call the proposed control zero-in-equilibrium feedback control and we prove that it is able to stabilize branches of equilibria, except at singularities of codimension n+1, where n is the number of state space dimensions the feedback can depend on. We apply the method to a simulated evacuation scenario were pedestrians have to reach an exit after maneuvering left or right around an obstacle. The scenario shows a hysteresis phenomenon with bistability and tipping between two possible steady pedestrian flows in microscopic simulations. We demonstrate for the evacuation scenario that the proposed control law is able to uniformly discover and stabilize steady flows along the entire branch, including points where other non-invasive approaches to feedback control become singular.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipDFG (Deutsche Forschungsgemeinschaft)en_GB
dc.identifier.citationVol. 22 (1), pp. 1 - 36en_GB
dc.identifier.doi10.1137/22M1482032
dc.identifier.grantnumberEP/V04687X/1en_GB
dc.identifier.grantnumberEP/N023544/1en_GB
dc.identifier.grantnumberSFB1270/1-299150580en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130545
dc.identifierORCID: 0000-0002-9558-1324 (Sieber, Jan)
dc.language.isoenen_GB
dc.publisherSociety for Industrial and Applied Mathematicsen_GB
dc.rights© 2023 The author(s). This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/  en_GB
dc.subjectmultistabilityen_GB
dc.subjectbifurcation analysisen_GB
dc.subjectpedestrian flowen_GB
dc.subjectcontrol-based continuationen_GB
dc.subjectnon-invasive controlen_GB
dc.subjectfeedback controlen_GB
dc.subjectunstable states in experimentsen_GB
dc.titleContinuation with Noninvasive Control Schemes: Revealing Unstable States in a Pedestrian Evacuation Scenarioen_GB
dc.typeArticleen_GB
dc.date.available2022-08-26T10:46:39Z
dc.identifier.issn1536-0040
dc.descriptionThis is the author accepted manuscript. The final version is available from the Society for Industrial and Applied Mathematics via the DOI in this recorden_GB
dc.identifier.journalSIAM Journal on Applied Dynamical Systemsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/  en_GB
dcterms.dateAccepted2022-08-20
dcterms.dateSubmitted2022-03-02
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-08-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-08-25T23:12:05Z
refterms.versionFCDAM
refterms.dateFOA2023-07-11T14:28:52Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The author(s). This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/  
Except where otherwise noted, this item's licence is described as © 2023 The author(s). This version is made available under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/