Show simple item record

dc.contributor.authorGregory, O
dc.contributor.authorLanger, A
dc.date.accessioned2022-08-26T11:12:49Z
dc.date.issued2022-09-30
dc.date.updated2022-08-26T06:44:30Z
dc.description.abstractFor a smooth and proper scheme over an artinian local ring with ordinary reduction over the perfect residue field we prove- under some general assumptions- that the relative de Rham-Witt spectral sequence degenerates and the relative crystalline cohomology, equipped with its display structure arising from the Nygaard complexes, has a Hodge-Witt decomposition into a direct sum of (suitably Tate-Twisted) multiplicative displays. As examples our main results include the cases of abelian schemes, complete intersections, surfaces, varieties of K3 type and some Calabi-Yau n-folds.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationPublished online 30 September 2022en_GB
dc.identifier.doi10.1112/jlms.12679
dc.identifier.grantnumberEP/T005351/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130547
dc.identifierORCID: 0000-0002-1783-2597 (Langer, Andreas)
dc.language.isoenen_GB
dc.publisherWiley / London Mathematical Societyen_GB
dc.rights© 2022 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.titleHodge-Witt decomposition of relative crystalline cohomologyen_GB
dc.typeArticleen_GB
dc.date.available2022-08-26T11:12:49Z
dc.identifier.issn1469-7750
dc.descriptionThis is the final version. Available on open access from Wiley via the DOI in this recorden_GB
dc.identifier.journalJournal of the London Mathematical Societyen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-08-22
dcterms.dateSubmitted2020-08-31
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-08-22
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-08-26T06:44:32Z
refterms.versionFCDAM
refterms.dateFOA2022-10-03T15:23:02Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
Except where otherwise noted, this item's licence is described as © 2022 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.