Show simple item record

dc.contributor.authorBowen, P
dc.contributor.authorThuburn, J
dc.date.accessioned2022-09-21T08:11:04Z
dc.date.issued2022-09-25
dc.date.updated2022-09-20T16:06:58Z
dc.description.abstractIn numerical models of the atmosphere, the non equilibrium thermodynamic processes involving moisture are not always treated consistently — possibly leading to inconsistencies and errors in the energy budget. Therefore, a more consistent formulation of (moist) thermodynamics is important, for short timescale weather models, and long-timescale climate models. In part I, we derived a thermodynamically consistent framework, describing condensation, evaporation, freezing, and melting of cloud droplets, in which all thermodynamic quantities of interest were derived from an internal energy potential, and with the moist thermodynamics coupled to a 2D semi-implicit semi-Lagrangian dynamical core. While this framework was primed to express non-equilibrium processes, it was solved for the equilibrium regime only. Here, we follow the methods in part I, but with the expression of the non-equilibrium processes ‘turned on’, e.g. allowing freezing of super-cooled water, or evaporation into subsaturated air. To implement the proposed approach it is necessary to translate conventional atmospheric microphysics expressions for transfer rates of matter and entropy in and around a cloud droplet into the formalism of non-equilibrium thermodynamics. This procedure is first derived for some simple idealised cases, beginning with liquid droplet growth by vapour diffusion, and proceeding to more complex three-phase cases. To demonstrate the approach we then simulate some idealised cloudy thermals, comparing the equilibrium and non-equilibrium regimes—finding a robust decrease in the vertical velocity in the non-equilibrium regime, as expected. Thus, this work demonstrates the feasibility of building a numerical model that includes a framework for consistently modelling the moist non-equilibrium thermodynamics of an atmospheric system and provides a step towards this type of more consistent atmospheric modelling.en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.identifier.citationPublished online 25 September 2022en_GB
dc.identifier.doi10.1002/qj.4373
dc.identifier.grantnumberNE/L002434/1en_GB
dc.identifier.grantnumberNE/N013123/1en_GB
dc.identifier.grantnumberNE/T003863/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130899
dc.identifierORCID: 0000-0002-4598-546X (Thuburn, John)
dc.language.isoenen_GB
dc.publisherWiley / Royal Meteorological Societyen_GB
dc.rights.embargoreasonUnder embargo until 25 September 2023 in compliance with publisher policyen_GB
dc.rights© 2022 Wiley
dc.subjectInternal energy potentialen_GB
dc.subjectGibbs potentialen_GB
dc.subjectthermodynamic consistencyen_GB
dc.subjectnon-equilibrium thermodynamicsen_GB
dc.subjectphysics-dynamics couplingen_GB
dc.subjectmicrophysicsen_GB
dc.subjectsemi-impliciten_GB
dc.subjectSLICEen_GB
dc.titleConsistent and flexible thermodynamics in atmospheric models using internal energy as a thermodynamic potential. Part II: Non-equilibrium regime.en_GB
dc.typeArticleen_GB
dc.date.available2022-09-21T08:11:04Z
dc.identifier.issn0035-9009
dc.descriptionThis is the author accepted manuscript. The final version is available from Wiley via the DOI in this recorden_GB
dc.identifier.eissn1477-870X
dc.identifier.journalQuarterly Journal of the Royal Meteorological Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-09-20
dcterms.dateSubmitted2022-03-07
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-09-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-09-20T16:07:02Z
refterms.versionFCDAM
refterms.dateFOA2023-09-24T23:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record