Show simple item record

dc.contributor.authorBenedicks, M
dc.contributor.authorMisiurewicz, M
dc.contributor.authorRodrigues, A
dc.date.accessioned2022-10-05T08:19:21Z
dc.date.issued2022-07-05
dc.date.updated2022-10-04T18:39:43Z
dc.description.abstractFor the family of Double Standard Maps fa,b = 2x + a + b π sin 2πx (mod 1) we investigate the structure of the space of parameters a when b = 1 and when b ∈ [0, 1). In the first case the maps have a critical point, but for a set of parameters E1 of positive Lebesgue measure there is an invariant absolutely continuous measure for fa,1. In the second case there is an open nonempty set Eb of parameters for which the map fa,b is expanding. We show that as b % 1, the set Eb accumulates on many points of E1 in a regular way from the measure point of view.en_GB
dc.description.sponsorshipSimons Foundationen_GB
dc.description.sponsorshipSwedish Research Councilen_GB
dc.description.sponsorshipGöran Gustafsson Foundation UU/KTHen_GB
dc.format.extent1-40
dc.identifier.citationPublished online 5 July 2022en_GB
dc.identifier.doihttps://doi.org/10.1017/etds.2022.45
dc.identifier.grantnumber4266012en_GB
dc.identifier.grantnumber2016-05482en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131102
dc.identifierORCID: 0000-0003-3834-9673 (RODRIGUES, ANA)
dc.language.isoenen_GB
dc.publisherCambridge University Pressen_GB
dc.rights.embargoreasonUnder embargo until 5 January 2023 in compliance with publisher policyen_GB
dc.rights© The Author(s), 2022. Published by Cambridge University Press.en_GB
dc.subjectdouble standards mapsen_GB
dc.subjectabsolutely continuous invariant measureen_GB
dc.subjectexpansionen_GB
dc.titleExpansion properties of double standard mapsen_GB
dc.typeArticleen_GB
dc.date.available2022-10-05T08:19:21Z
dc.identifier.issn0143-3857
exeter.article-numberPII S0143385722000451
dc.descriptionThis is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this record en_GB
dc.identifier.eissn1469-4417
dc.identifier.journalErgodic Theory and Dynamical Systemsen_GB
dc.relation.ispartofErgodic Theory and Dynamical Systems
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-07-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-10-05T08:12:08Z
refterms.versionFCDAM
refterms.dateFOA2023-01-05T00:00:00Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-07-05


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s), 2022. Published by Cambridge University Press.
Except where otherwise noted, this item's licence is described as © The Author(s), 2022. Published by Cambridge University Press.