Show simple item record

dc.contributor.authorRidgway, R
dc.contributor.authorZamyatina, M
dc.contributor.authorMayne, N
dc.contributor.authorManners, J
dc.contributor.authorLambert, H
dc.contributor.authorBraam, M
dc.contributor.authorDrummond, B
dc.contributor.authorHebrard, E
dc.contributor.authorPalmer, P
dc.contributor.authorKohary, K
dc.date.accessioned2022-10-11T13:11:59Z
dc.date.issued2022-10-11
dc.date.updated2022-10-10T13:22:01Z
dc.description.abstractStellar flares present challenges to the potential habitability of terrestrial planets orbiting M dwarf stars through inducing changes in the atmospheric composition and irradiating the planet's surface in large amounts of ultraviolet light. To examine their impact, we have coupled a general circulation model with a photochemical kinetics scheme to examine the response and changes of an Earth-like atmosphere to stellar flares and coronal mass ejections. We find that stellar flares increase the amount of ozone in the atmosphere by a factor of 20 compared to a quiescent star. We find that coronal mass ejections abiotically generate significant levels of potential bio-signatures such as N2O. The changes in atmospheric composition cause a moderate decrease in the amount of ultraviolet light that reaches the planets surface, suggesting that while flares are potentially harmful to life, the changes in the atmosphere due to a stellar flare acts to reduce the impact of the next stellar flare.en_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipUKRIen_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.identifier.doi10.24378/exe.4244
dc.identifier.grantnumberST/R000395/1en_GB
dc.identifier.grantnumberRPG-2020-82en_GB
dc.identifier.grantnumberMR/T040866/1en_GB
dc.identifier.grantnumberST/V000594/1en_GB
dc.identifier.grantnumber860470en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131205
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.relation.urlhttp://hdl.handle.net/10871/131398en_GB
dc.rightsCC BY 4.0en_GB
dc.subjectradiative transferen_GB
dc.subjectplanets and satellites: compositionen_GB
dc.subjectstars: flareen_GB
dc.subjectplanet-star interactionsen_GB
dc.subjectplanets and satellites: atmospheresen_GB
dc.subjectplanets and satellites: terrestrial planetsen_GB
dc.title3D modelling of the impact of stellar activity on tidally-locked terrestrial exoplanets: atmospheric composition and habitability (dataset)en_GB
dc.typeDataseten_GB
dc.date.available2022-10-11T13:11:59Z
dc.descriptionThis dataset contains a series of netCDF files that contain the data that created the figures in Ridgway et al 2022. This dataset was derived from Unified Model output files, which themselves were created from simulations.en_GB
dc.descriptionThe article associated with this dataset is available in ORE at: http://hdl.handle.net/10871/131398en_GB
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_GB
rioxxterms.versionNAen_GB
rioxxterms.licenseref.startdate2022-10-11
rioxxterms.typeOtheren_GB
refterms.dateFOA2022-10-11T13:12:07Z


Files in this item

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's licence is described as CC BY 4.0